본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A0%84%EC%83%81%ED%9B%88
최신순
조회순
강유전체 활용 차세대 반도체 메모리 혁신
강유전체는 메모리 소자에서 전하를 잘 저장하기 때문에 "전기를 기억하는 소재"와 같다는 특성으로 차세대 반도체 기술 개발에 있어 핵심 소재로 부각되고 있다. 우리 연구진이 이러한 강유전체 소재를 활용해 현재 메모리 반도체 산업의 양대 산맥인 디램(DRAM)과 낸드 플래시(NAND Flash) 메모리의 한계를 극복한 고성능, 고집적 차세대 메모리 소자를 개발하는데 성공했다. 우리 대학 전상훈 교수 연구팀이 하프니아 강유전체 소재*를 활용한 차세대 메모리 및 스토리지 메모리 기술을 개발했다고 6일 밝혔다. *하프니아 강유전체 소재: 비휘발성 절연막으로, CMOS 공정 호환성, 동작 속도, 내구성 등의 우수한 물리적 특성을 바탕으로 차세대 반도체의 핵심 소재로 활발하게 연구되고 있는 물질 디램 메모리는 우리가 스마트폰, 컴퓨터, USB 등에서 사용하는 데이터를 저장하는 휘발성 메모리다. 휘발성 특성으로 인해, 외부 전력이 끊어지면 저장된 데이터가 손실되지만, 공정 단가가 낮고 집적도가 높아 메인 메모리로 활용돼 왔다. 하지만 디램 메모리 기술은 소자의 크기가 작아질수록 디램 소자가 정보를 저장하는 저장 커패시터의 용량도 작아지게 되고, 더 이상 메모리 동작을 수행하기 어렵다. 연구팀은 저장 커패시터는 정보를 저장하는 디램 기술의 한계를 극복하고자 이러한 저장 커패시터가 물리적으로 작은 면적에서도 높은 저장 용량을 달성할 수 있도록 개선하는 데에 집중했다. 이를 위해 하프니아 강유전체 기반 극박막의 고유전율 물질을 개발했다. 연구 결과 현재까지 보고된 디램 커패시터 중, 가장 낮은 2.4 Å (머리카락 굵기의 약 10만분의 1)의 SiO2(실리콘 산화물) 유효 두께와 같이 얇은 층에 저장하는 것을 달성했다. 또한 연구팀은 디램 메모리 기술을 잠재적으로 대체할 수 있는 후보군으로 주목받고 있는 강유전체 메모리 FRAM 메모리도 개발하였다. 현 DRAM 수준의 1V 이하의 낮은 전압에서도 비 휘발성 정보 저장과 삭제가 확실히 이루어지는 기술은 에너지 효율성을 크게 향상시켜 차세대 메모리에 필수적이다. 디램 메모리 기술에 이어 연구팀은 낸드 플래시 메모리의 한계를 극복할 하프니아 강유전체 기반의 차세대 메모리 기술을 개발했다. 낸드 플래시 메모리는 우리가 스마트폰, 컴퓨터, USB 등에서 사용하는 데이터를 저장하는 비휘발성 메모리이다. 현재, 낸드플래시 메모리의 저장 용량을 늘리기 위해 여러 층을 쌓아 올리는 방식으로 발전해 왔지만, 물리적인 한계로 인해 500층, 1000층 이상으로 쌓기가 어려운 상황이다. 이에 연구팀은 강유전체라는 새로운 소재를 낸드 플래시에 적용하는 방식을 연구한 결과, 소재 계면에 TiO2 층이라는 얇은 층을 추가함으로써 1000단 이상의 수직 적층 3차원이며 외부 환경의 간섭에도 데이터를 안정적으로 유지하도록 설계했다. 마지막으로 기존의 낸드 플래시 기술에서 산화물 채널 기반의 메모리 소자는 데이터를 완전히 지울 수 없는 한계가 있어 새로운 구조의 고성능 산화물 채널 기반 낸드 플래시 소자를 개발하는 데 성공했다. 이 소자는 더 많은 데이터를 저장할 수 있고 데이터를 10년 이상 안정적으로 보존할 수 있는 특징을 가진다. 전상훈 교수는 “이번 연구 결과들은 스케일링 이슈로 인해 답보상태에 있는 메모리 반도체 기술 개발에 돌파구가 되는 기술이 될 것으로 판단되며, 향후 다양한 인공지능 컴퓨팅 및 엣지 컴퓨팅 기술 상용화에 기여할 수 있을 것”이라고 설명했다. 벤카테스왈루 가담(Venkateswarlu Gaddam) 연구 교수, 김기욱 박사 과정, 조홍래 박사 과정, 황정현 박사 과정, 이상호 박사 과정, 최효준 석사 과정, 강현준 석사 과정이 공동 제1 저자로 참여했고 이러한 연구 성과를 국제적으로 인정받아 반도체 산업계 최고 수준의(Top-tier) 컨퍼런스에 2024년 5편의 논문을 발표했다. (2024 VLSI 2편, 2024 IEDM 3편) - In-depth analysis of the Hafnia ferroelectrics as a key enabler for low voltage & QLC 3D VNAND beyond 1K layers: Experimental demonstration and modeling VLSI 24 DOI: 10.1109/VLSITechnologyandCir46783.2024 - Low-Damage Processed and High-Pressure Annealed High-k Hafnium Zirconium Oxide Capacitors near Morphotropic Phase Boundary with Record-Low EOT of 2.4 Å & high-k of 70 for DRAM … VLSI 24 DOI: 10.1109/VLSITechnologyandCir46783.2024 - Unveiling the Origin of Disturbance in FeFET and the Potential of Multifunctional TiO2 as a Breakthrough for Disturb-free 3D NAND Cell: Experimental and Modeling https://iedm24.mapyourshow.com/8_0/sessions/session-details.cfm?scheduleid=4 - Oxide Channel Ferroelectric NAND Device with Source- tied Covering Metal Structure: Wide Memory Window (14.3 V), Reliable Retention (> 10 years) and Disturbance Immunity (△Vth ≤ 0.1 V) for QLC Operation https://iedm24.mapyourshow.com/8_0/sessions/session-details.cfm?scheduleid=47 - Design Methodology for Low-Voltage Operational (≤1 V) FRAM Cell Capacitors and Approaches for Overcoming Disturb Issues in 1T-nC Arrays: Experimental & Modeling: https://iedm24.mapyourshow.com/8_0/sessions/session-details.cfm?scheduleid=54 참고로, IEEE VLSI와 IEEE IEDM 학회는 삼성전자, SK 하이닉스, 마이크론, 인텔 등 굴지의 반도체 업계와 세계적인 석학들이 최신 기술 개발을 공유하고 미래 기술의 지향점을 논의하는 학회로 반도체 올림픽이라고 불린다. 한편, 이 연구는 삼성전자, 한양대학교와 협업을 통해서 수행되었으며, 한국산업기술평가원 (KEIT) 민관공동투자 반도체 고급인력양성사업, 과학기술정보통신부 혁신연구센터(IRC) 지원 사업, 삼성전자(Samsung Electronics)의 지원을 받아 진행됐다.
2025.01.06
조회수 3205
획기적 음의 정전용량 플래시 메모리 최초 개발
우리 대학 전기및전자공학부 전상훈 교수 연구팀이 `음의 정전용량 효과(Negative Capacitance Effect, 이하 NC 효과)*'를 활용해 기존 플래시 메모리의 물리적 성능 한계를 뛰어넘는 음의 정전용량 플래시 메모리 (NC-Flash Memory)를 세계 최초로 개발했다고 18일 밝혔다. *음의 정전용량 효과: 음의 정전용량 현상은 인가되는 전압이 증가하면 전하량이 감소함을 의미한다. 음의 정전용량 특성을 가지는 유전체 사용시, 트랜지스터에 인가되는 전압을 내부적으로 증폭하여 상대적으로 낮은 동작전압을 사용할 수 있어, 파워소모를 줄일 수 있다. 전기및전자공학부 김태호 박사과정과 김기욱 박사과정이 공동 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' 2022년 12월호에 출판됐다. (논문명 : The Opportunity of Negative Capacitance Behavior in Flash Memory for High-Density and Energy-Efficient In-Memory Computing Applications) 이 국제학술지는 독일 와일리 출판사(Wiley-VCH)에서 발행하는 피어리뷰 과학 저널이다. (Impact Factor : 19.924) 현대 전자 소자에서 축전기(Capacitor)는 매우 중요한 구성 요소의 하나로, 전자 소자가 소형화되고 수직 방향으로 적층 되면서 축전기에 저장되는 전하량(Charge, Q)이 감소하는 문제가 생기므로 높은 정전용량(Capacitance, C)을 가진 유전체 물질이 필수적으로 요구되고 있다. 여기에 일반적인 축전기와 다르게 정전용량이 음의 값을 갖는(Negative Capacitance) 축전기를 활용한다면 다층의 축전기의 전체 정전용량을 오히려 더 증가시킬 수 있고, 차세대 소자에 적합한 높은 정전용량 소자 개발 난제를 해결할 수 있을 것이라는 가설이 제안되었다. 최근 메모리 공급업체들은 데이터의 폭발적 증가와 더 높은 용량의 솔리드 스테이트 드라이브(SSD) 및 더 빠른 액세스 시간에 대한 요구로 인해 기술 경쟁을 치열하게 하고 있다. 스토리지의 핵심 기술인 3D 낸드 플래시는 지속적으로 더 높은 층을 적층할 수 있는 기술을 요구하고 있고, 2028년에는 1,000단 이상의 메모리 적층이 필요할 것으로 예상되고 있다. 한편, 강유전체* 물질에서 보이는 `음의 정전용량 효과(NC 효과)'은 전자 소자에 인가된 외부 전압을 내부적으로 증폭해 전력 소모를 줄이는 특성이 있어, 전자 소자의 물리적 성능 한계를 극복할 수 있다는 가능성이 제시됐다. 최근 페로브스카이트 강유전체에서 NC 효과를 실험적으로 관찰했으나, 페로브스카이트 강유전체의 소형화 한계 및 CMOS 공정과의 부적합성으로 인해 NC 효과를 활용한 전자 소자의 구현에 대해 상당한 회의론을 불러일으켰다. *강유전체: 전기적으로는 절연체이지만 자연상태에서 외부 전기장이 없어도 전기 편극을 지닐 수 있는 특이한 물리적 성질을 가진 물질 전상훈 교수 연구팀은 기존 플래시 메모리의 물리적 성능 한계를 극복하고 동작전압을 낮추기 위해, 반도체 공정에 사용되는 하프늄옥사이드(HfO2) 강유전체 박막의 NC 효과를 안정화해 저전압 구동이 가능한 강유전체 소재의 NC-플래시 메모리를 세계 최초로 개발했다. 개발된 NC-플래시 메모리는 기존 플래시 메모리 대비 전력 소모가 10,000배 이상 낮은 저전력 고성능 특성을 달성했다. 연구팀은 그뿐만 아니라 기존 컴퓨팅 구조인 폰노이만 아키텍처를 대체하여 새롭게 지향하는 인메모리 컴퓨팅을 NC-플래시 메모리를 기반으로 구현해 세계 최고 수준의 에너지 효율 또한 달성했다. 이번 연구 결과는 빠른 스토리지를 필요로 하는 최신 컴퓨팅과 네트워킹의 요구를 충족하는 차세대 낸드 플래시 메모리 개발에 있어 핵심 역할을 할 것이다. 한편, 이번 연구는 연세대학교와 협업을 통해서 이루어졌고, 한국 연구재단 지능형 반도체 기술개발사업의 지원을 받아 수행됐다.
2023.01.18
조회수 7985
차세대 반도체 핵심소재로 열적으로 안정된 강유전체 소재 최초 개발
우리 대학 전기및전자공학부 전상훈 교수 연구팀이 하프니아 강유전체 소재의 물성적 이해를 바탕으로 반도체 3D 집적 공정에서도 열적으로 안정한 *강유전체 소재를 세계 최초로 개발했다고 12일 밝혔다. 현재 반도체 제조 업계에서 고집적, 고효율의 3D 메모리 소자에 대한 필요성이 꾸준하게 대두되고 있다는 점을 고려할 때, 이번 연구는 강유전체 기반의 3D 메모리 집적 공정에서 핵심 기술로 평가받을 것이라 예상된다. *강유전체: 외부의 전기장 없이도 스스로 분극을 가지는 재료로서 외부 전기장에 의해 분극의 방향이 바뀔 수 있는 소재를 말한다. 비휘발성 특성이 있어, 기능성 소재로서 메모리 소자에 활용이 가능하지만, 고온에서 열적으로 안정성을 확보해야하는 도전 목표가 남아 있으며, 일반 유전체를 일컫는 상유전체는 외부의 전기장이 없으면 분극 특성을 유지하지 못한다는 점에서 다르다. 하프니아 강유전체 소재는 비휘발성 절연막으로, CMOS 공정 호환성, 동작 속도, 내구성 등의 우수한 물리적 특성을 바탕으로 차세대 반도체의 핵심 소재로써 활발하게 연구되고 있는 물질이다. 하지만 하프니아 소재는 필연적으로 고온에서 비휘발성 특성을 잃고 누설전류가 증가하는 한계를 가진다. 이를 억제하기 위해 세계 유수의 기관들에서 다양한 접근방법들이 보고됐지만, 3D 집적 공정 시에 발생하는 고온의 열처리 조건 (750℃ 이상, 30분)에서 강유전체 박막 내의 일반 유전체 (상유전체) 형성을 억제할 수 없었다. 전상훈 교수 연구팀은 세계 최초로 3D 집적 공정에서 요구되는 고온의 열처리 조건에서도 강유전체 박막 내의 상유전체의 형성을 완벽하게 억제하고 비휘발성 기능을 유지하며 우수한 내구성을 가지는 하프니아 강유전체 소재 및 공정 기술을 개발하는 데에 성공했다. 연구팀은 강유전체 박막 내에 이온 반지름이 작은 원소를 고용하는 도핑 기술을 활용해 강유전체 박막의 결정화 온도를 제어함과 동시에 도펀트의 농도에 따른 운동학적 에너지를 고려해 강유전체 소재의 비휘발성 및 기능성과 열적 안정성을 획기적으로 개선했다. 전상훈 교수 연구팀은 CMOS 공정을 이용해 강유전체 기반의 메모리 소자를 집적했고 고온의 열적 에너지(750℃ 이상, 30분)를 가한 후에도 우수한 강유전성이 발현되는 것을 확인했다. 또한 열적 에너지에 따른 강유전체 소재의 도메인 스위칭 동작을 전기적 측정을 통해 직관적으로 분석할 수 있는 시스템을 개발해 추후, 강유전체 소재의 열적 안정성 연구의 프레임 워크를 구축 및 제시했다. 해당 연구는 학계에서 활발하게 연구되고 있는 강유전체 소재의 기능성과 반도체 제조 업계에서 필요로 했던 강유전체 소재 기반의 3D 메모리 소자 집적 공정 사이의 간극을 줄였다는 점에서 큰 의미를 가진다. 전상훈 교수는 “이번 연구 결과는 답보상태에 있던 강유전체 소재 기반의 3D 메모리 및 회로 집적 기술 개발에 대한 돌파구가 되는 기술이 될 것으로 판단되며, 향후 고집적/고효율의 시스템 개발에 있어 핵심 역할을 할 것”이라고 설명했다. 전기및전자공학부 김기욱 박사 과정이 제1 저자로 수행한 이번 연구는 반도체 소자 및 회로 분야의 최고 권위 학회인‘IEEE 국제전자소자학회(International Electron Devices Meeting) 2022 (IEDM 2022)’에 12월 5일 발표를 마쳤다. 한편 이번 연구는 삼성전자(Samsung Electronics)와 차세대 지능형 반도체 사업단의 지능형 반도체 선도기술개발의 지원을 받아 진행됐다.
2022.12.12
조회수 8669
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1