-
몸에 스티커 붙여 생체신호 측정한다
우리 대학 전기 및 전자공학과 유회준 교수, 유승협 교수 공동 연구팀이 신체 모든 부위에 손쉽게 부착이 가능한 생체신호 측정 스마트 스티커 센서를 개발했다.
연구팀의 스티커 센서는 반도체 칩과 휘어지는 유기광전소자를 결합한 초저전력 센서로 심전도, 근전도 뿐 아니라 산소 포화도도 측정 가능해 의료 및 헬스케어 분야에서 광범위하게 응용될 것으로 기대된다.
이용수 박사과정과 이현우 석사과정이 주도한 이 기술은 미국 샌프란시스코에서 열린 세계적 반도체 학술대회 ISSCC(국제고체회로설계학회)에서 3일(현지시간) 하이라이트 논문으로 발표됐다.
스마트 스티커 센서는 길이 55mm, 너비 25mm의 직사각형 페트 필름(PET Film)에 센서, 처리기, 무선송수신기 기능을 집적한 초저전력 시모스 단일칩시스템(CMOS SoC)을 부착한 형태로 하이브리드 집적기술을 활용했다.
연구팀은 적, 녹색의 유기발광다이오드(OLED)와 유기광센서(OPD)로 구성된 유기광전소자를 사용해 전력 소모를 크게 줄였다.
산소 포화도 측정에는 녹색, 적색 광원이 동시에 필요한데 녹색 파장대역에서 효율이 낮은 기존 발광다이오드와 달리, OLED는 두 색의 파장대역 모두에서 고르게 높은 양자효율을 보인다. 동시에 광손실이 적도록 인체에 밀착 가능한 유연함을 가져 적은 구동 전류로 충분한 신호를 확보했다.
연구팀은 기존 기기들이 블루투스 통신으로 데이터를 전송하는 것과 달리 전도성이 존재하는 인체를 통신매질로 이용했다. 고속 저전력 전송이 가능한 인체매질통신 기술을 실현해 무거운 외부 소자 없이 초저전력으로 데이터 통신이 가능하다.
또한 기존 기기들이 개인차나 부위에 상관없이 항상 최대의 빛을 방출하는 것에 비해 스마트 스티커 센서는 자동으로 수신부의 빛 양을 모니터링해 상황에 맞춰 빛을 조절한다.
이를 통해 주변 빛이나 동작에 따른 신호 잡음을 효과적으로 제거하는 기술도 갖췄다. 또한 유기광전소자 특성상 빛의 밝기가 시간의 흐름에 따라 서서히 감소할 수 있지만 이 스티커 센서는 일정한 빛이 나오도록 제어해 장기간 일정한 밝기를 유지할 수 있다.
스마트 스티커 센서는 총 200마이크로와트(μW) 미만의 초저전력으로 구동 가능해 기존 기기의 수~수십 밀리와트(mW)에 비해 매우 감소된 전력 소비량을 보였다. 또한 동전 배터리 포함 약 2그램의 무게로 피부에 완벽히 부착이 가능해 48시간 이상 지속적으로 생체신호를 측정할 수 있다.
유회준 교수는 “국내외 IT 기업들이 차세대 산업으로 웨어러블 헬스케어를 주목하고 관련 디바이스를 출시하고 있다”며 “시장 선점을 위해서는 초저전력 및 소형화는 물론이고 시계, 밴드 같은 액세서리 형태에서 한 단계 나아가는 변화를 보여야 할 것이다”고 말했다.
유승협 교수는 “이번 스마트 스티커 센서의 개발로 플렉서블 OLED와 유기광센서 응용에 새 가능성을 열었다”고 말했다.
연구팀은 관련 회사에 기술이전을 통해 올해 내로 상용화할 예정이라고 밝혔다.
□ 그림 설명
그림1. 스마트 스티커 센서에 쓰인 플렉서블 OLED와 유기포토센서
그림2. 반도체 칩과 유기광전 소자 결합 하이브리드 스마트 스티커 센서
그림3. 스마트 스티커 센서 씨모스 단일칩시스템(CMOS SoC)
2016.02.05
조회수 16909
-
유회준 교수, 시선 추적 스마트 안경 ‘케이-글래스 2’ 개발
<유회준 교수>
우리 대학 전기 및 전자공학과 유회준 교수 연구팀이 사용자의 시선을 인식해 증강현실을 구현할 수 있는 저전력 스마트안경 ‘케이-글래스2(K-Glass 2)’를 개발했다.
이번 연구는 지난 2월 미국 샌프란시스코에서 열린 세계 반도체 올림픽이라 불리는 국제고체회로설계학회(ISSCC)에서 발표돼 주목을 받았다.
케이-글래스 2의 핵심 기술인 시선 추적 이미지 센서 ‘아이-마우스(i-Mouse)’는 사용자의 시선에 따라 마우스 포인터를 움직이고, 눈 깜빡임으로 아이콘을 클릭할 수 있다. 더불어 안경 너머의 물체를 쳐다보면 관련 증강 현실 정보를 얻을 수 있다.
케이-글래스 2는 음성 인식 기능을 주로 사용하는 구글 글래스에 비해 주변 소음이 많은 야외에서도 방해받지 않고 쉽게 조작이 가능하다.
기존 시선 추적 시스템은 눈을 촬영하는 이미지 센서와 시선추적 알고리즘을 가속하는 멀티코어 프로세서로 구성된다. 이는 평균 200mW 이상의 전력을 필요로 해 스마트폰 배터리의 20%가량인 스마트 안경 시스템에서는 부적합했다.
하지만 케이-글래스 2의 시선 추적 이미지 센서는 복잡한 시선 추적 알고리즘을 센서 내에서 모두 처리하기 때문에 10mW의 평균 전력으로도 24시간 이상 동작이 가능하다.
이 기술은 유 교수 팀이 시선 추적 및 시선 속 물체를 인식할 수 있는 저전력의 전자 칩을 개발함으로써 가능해졌다.
또한 전압과 동작 주파수를 동적 조절이 가능한 멀티코어 프로세서에 함께 집적했기 때문에 복잡한 증강현실 알고리즘을 저전력으로 가속할 수 있다.
유 교수는 “스마트 안경 분야에서 주도권을 잡기 위해선 소형화·저전력화는 물론 사용자 인터페이스(UI)와 사용자 경험(UX)에 대한 개발이 필수”라며, “케이-글래스 2는 복잡한 증강현실을 초저전력으로 구현해 차세대 스마트 IT분야의 견인차 역할을 할 것”이라고 밝혔다.
유회준 교수 지도하에 홍인준 박사과정 학생이 주도해 개발한 케이-글래스 2는 미래창조과학부 국책과제인 뇌모방 지능형 메니코아 프로세서 연구사업의 일환으로 진행됐다.
사진1. 케이-글래스 2 후면 사진 및 기능 설명
사진2. 케이-글래스 2 착용 사진
2015.03.09
조회수 14612
-
대장균 이용한 페놀 생산 성공
- 세계 최초로 대장균 이용해 리터당 3.8g의 페놀을 24시간 내 생산 성공 -
우리 학교 이상엽 특훈교수팀은 대장균을 이용해 재생 가능한 바이오매스로부터 페놀(phenol)을 생산하는 원천기술을 개발해 바이오테크놀로지(Biotechnology) 11일자 온라인판에 게재됐다.
이 기술은 친환경적인 미생물 발효 공정을 통해 화학물질을 생산하는 대사공학·공정 기술을 기반으로 개발돼 국내·외 생명공학 및 산업기술 발전에 크게 기여할 것으로 기대된다.
페놀은 석유화학공정을 통해 연간 800만 톤 이상 생산돼 폴리카보네이트, 에폭시, 제초제 등 다양한 산업에 폭넓게 사용되는 화학물질이다.
페놀이 갖고 있는 미생물에 대한 독성으로 인해 미생물을 이용한 페놀의 생산에 대한 연구는 그동안 어려움이 많아 생산량이 리터당 1g 미만 수준으로 더 이상의 향상이 이루어지지 못하고 있는 실정이었다.
최근 다양한 대장균들의 유전적, 생리·대사적 차이점이 보고되고 있는데 이 교수 연구팀은 이에 주목해 18종의 다양한 대장균 균주에 대해 동시에 대사공학을 적용해 그 중 ‘BL21’ 이라는 대장균 균주가 페놀생산에 가장 적합하다는 것을 발견했다.
연구팀이 적용한 기술 중 ‘합성 조절 RNA 기술’은 기존의 유전자 결실 방법보다 월등히 빠른 시간에 대사흐름의 조절을 가능하게 하는 기술로써 이번 연구에서도 18종의 대장균에 대한 대사공학을 동시에 진행하는데 중요한 역할을 했다.
또 미생물을 이용한 페놀의 생산에 있어 가장 큰 걸림돌이 페놀의 독성인데 연구팀은 발효공정에서 페놀의 대장균에 대한 독성을 최소화 할 수 있는 이상발효 공정(biphasic fermentation)을 이용해 페놀의 생산량을 증가시킬 수 있었다.
이렇게 개발된 대장균 균주는 기존 균주에 비해 월등히 높은 생산량과 생산능력을 보였으며 이상 유가식 발효(biphasic fed-batch fermentation)에서 리터당 3.8g의 페놀을 24시간 내에 생산할 수 있었다.
즉, 대장균을 이용해 재생 가능한 바이오매스로부터 쉽게 얻어질 수 있는 포도당을 이용해 페놀을 생산할 수 있는 균주를 개발해 세계 최고의 페놀 생산능력을 보이는 균주를 개발했다.
김병진 박사는 “다양한 합성생물학 기술들을 기반으로 대장균을 개량해 페놀을 처음으로 생산했으며 가장 높은 농도와 생산성을 기록했다”며 “발효 공정의 개량을 통해 미생물에 독성을 지니는 화합물의 생산가능성을 보여줬다는데 커다란 의미가 있다”고 말했다.
KAIST 생명화학공학과 이상엽 특훈교수 지도하에 김병진 박사, 박혜권 연구원이 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 글로벌 프론티어사업 지능형 바이오시스템설계 및 합성연구단의 지원을 받아 수행됐다.
2013.10.30
조회수 19587
-
초소형 스마트 침 시스템 개발
- 작고 가벼우면서 성능은 훨씬 뛰어나지만 가격은 1/100도 안돼 -- 지능형 컴퓨터 칩이 달린 침으로 과학적인 치료 가능 -
편리하고 과학적인 ‘초소형 스마트 침 시스템’이 KAIST 연구진에 의해 개발됐다.
우리 학교 전기 및 전자공학과 유회준 교수 연구팀이 크기는 동전만큼 작으면서도 환자의 상태를 실시간 모니터링 할 수 있는 "초소형 스마트 침 시스템‘을 개발했다고 8일 밝혔다.
유 교수팀이 개발한 전기침 치료기는 한의원에서 사용 중인 기존 침보다는 훨씬 작고 가벼우면서도 더 뛰어난 성능을 갖고 있지만 가격은 1/100도 안 된다.
전기침은 질병치료 등 의료분야 뿐만 아니라 지방분해 등 비의료 분야에서도 널리 사용되고 있다.
전기침 치료기는 전선이 연결된 커다란 집게를 침에 연결해 전기 자극을 주는 방식이다. 따라서 환자가 움직이거나 선에 힘이 실리게 되면 침이 구부러지거나 뽑히는 등 불안정한 상태로 치료해야만 했다.
연구팀이 개발한 ‘스마트 침 시스템’은 자체 개발한 직물형 인쇄회로 기판(Planar Fashionable Circuit Board, P-FCB)을 이용해 몸에 직접 붙이는 패치형으로 만들어 초소형화를 실현하면서 복잡한 선 연결을 없앴다.
특히 지능형IC를 갖춰 치료 중 생체 신호를 감지해 환자의 상태를 모니터링 할 수 있는 점이 큰 특징이다.
기존의 전기침 자극은 환자의 상태 및 치료 효과를 판단하는 데 육안 혹은 환자의 느낌 등의 주관적인 요소가 강했다. 그러나 이 시스템은 전기침 치료를 하면서 사용자의 근전도 및 체온 등을 감지해 환자의 상태를 파악하면서 다중 생체 신호도 감지해 치료 효과를 보다 객관적으로 검증할 수 있다.
이와 함께 안정적인 자극을 위해 초저전력으로 제작돼 코인 배터리만으로 연속 1시간 이상 동작이 가능해 치료에 충분한 동작시간을 확보했다.
유회준 교수의 지도아래 송기석 박사과정 학생이 개발한 ‘초소형 스마트 침 시스템’은 지난달 말 세계적인 반도체학술대회인 국제고체회로설계학회(International Solid-State Circuits Conference)에서 발표돼 국내․외 관련분야 학자들로부터 많은 관심을 받았다.
유회준 교수는 “이 시스템이 각광을 받고 있는 이유는 간편하고 과학적으로 치료할 수 있는 전기침 자극 시스템이 현재까지 개발된 적이 없었기 때문”이라며 “불편하고 비과학적이라고 인식 되었던 전기침 치료가 편리하고 과학적인 치료로 새롭게 거듭나는 계기가 될 것”이라고 말했다.
더불어 “개발된 생체 피드백 전기침 자극 시스템을 통해 그동안 풀리지 않았던 한의학의 과학화에 한걸음 다가갈 수 있다는 가능성을 제시했다는 점에서 매우 큰 의미를 갖는다”고 강조했다.
[그림 1,2] 스마트 전기침 시스템『스마트 전기침 시스템』은 전기침 패치, 침, 그리고 전도성 실로 구성된다. 전기침 패치는 동전 500원 정도의 크기로 패치 안에 코인 배터리와 지능형 IC를 탑재하고 있다. 지능형 전기 자극 IC는 0.13㎛ 공정으로 설계가 되어 있으며 12.5㎟의 아주 작은 면적을 갖기 때문에 작은 패치 위에 쉽게 구현될 수 있다. 또한 전력 소모 역시 최대 6.8mW로 매우 낮기 때문에 탑재된 코인 배터리로 1시간 이상의 치료 시간을 보장할 수 있다.
[그림 3] 스마트 전기침 패치 구조『스마트 전기침 시스템』의 패치는 크게 3개의 계층으로 구성이 된다. 1) 표면 전극층, 2) 전원층, 3) 회로층이다. 3) 회로층에는 전기 자극 IC와 코인 배터리가 탑재되고 전기 자극 IC와 침은 전도성 부직포와 전도성 실을 통해서 편리하고 안정적으로 연결이 될 수 있다.
[그림 4] 스마트 전기침 패치 구조『스마트 전기침 시스템』을 사용하여 전기 자극을 하는 방식을 사용하는 침의 개수에 따라 2가지로 나눌 수 있다. 1) 단일 지점 전기 자극 방식 : 하나의 침과 전기침 패치의 표면 전극 사이에 전류 자극을 하는 방식, 2) 양 지점 전기 자극 방식 : 두 개의 침 사이에 전류 자극을 하는 방식이다.
[그림 5] 기존 전기침과 스마트 전기침 시스템의 비교『스마트 전기침 시스템』은 500원짜리 동전 정도의 크기로 매우 작으며 직물위에 회로를 직접 인쇄하는 P-FCB 기술을 이용하여 이물감이 거의 느껴지지 않을 정도로 가볍게 제작되었다. 그리고 기존의 전기침과는 달리 복잡한 전선의 연결이 필요 없어 환자가 움직이는데 제약이 없다. 스마트 전기침 시스템은 전기 자극을 하면서 전기침 패치의 표면 전극을 통해 환자의 근전도 및 체온 정보를 수집/전송하여 환자의 상태에 따라 전기 자극 강도를 자동으로 조절할 수 있다.
[그림 6] 스마트 전기침 시스템 구성도스마트 전기침 시스템의 IC는 크게 4부분으로 구성된다. 1) 전기 자극부는 1~500Hz의 40uA~1mA의 자극 전류 펄스를 만들어 낸다. 2) 다중 모드 센서부는 전기 자극 중 근전도와 온도를 매우 낮은 소모 전력으로 감지한다. 3) 감지된 근전도와 온도 정보는 SoC 제어부의 on-chip 메모리에 저장이 된다. 4) 이후 저장된 근전도와 온도 정보는 인체 매질 통신부를 통해서 외부로 전송이 되어 시술자 및 사용자에게 나타나게 된다.
2012.03.08
조회수 22447
-
생명과학과 김학성 교수, 사이언스誌에 논문 발표
“생명요소인 단백질도 설계, 제조한다”
- 단백질의 자연 진화과정을 밝혀 신 기능 단백질 설계 기술 개발
- 의약용 단백질 및 산업용 효소 창출 등 생명공학 분야에서 광범위하게
활용될 수 있는 기반 기술
- 사이언스誌에 중요 논문 중 하나로 소개 : 별도“Perspective"란에
자세한 연구 내용 설명
KAIST 생명과학과 김학성(金學成, 48) 교수 / 박희성(朴熙成, 35) 박사팀이 개발한 ‘신 기능 단백질 설계 기반 기술’이 세계적 학술지인 사이언스 誌에 1월 27일자로 발표했다.
“기존에 존재하는 단백질 골격을 이용한 신 기능 단백질의 설계와 창출 (Design and evolution of new catalytic activity using an existing protein scaffold)“이라는 제목으로 발표되는 이 기술에 대해 사이언스誌는 별도의 “Perspective"란에 연구 내용을 자세히 설명하여, 그 중요성과 파급 효과를 강조하고 있다.
金 교수팀은 자연계에서 단백질이 진화해온 복잡한 과정을 단순화시켜 새로운 기능을 가진 단백질을 효율적으로 설계하고 제조하는 기반 기술을 개발하였다. 이 기술은 의약용 단백질 및 산업용 효소의 개발 등 생명공학 분야에서 광범위하게 활용될 수 있으며 바이오기술(BT)의 산업화라는 점에서 주목된다.
생물체내에는 5만 종류 이상의 다양한 기능을 수행하는 단백질이 존재한다. 자연 진화 과정에서 생성된 다양한 단백질들은 기존 유전자의 염기서열이 변형된 것뿐만 아니라 임의의 길이나 염기서열을 갖는 유전자 조각들이 오랜 시간에 걸쳐 삽입, 제거, 재조합 등의 복잡한 과정의 단계를 거쳐서 만들어진 것으로 밝혀지고 있다.
단백질은 20개의 아미노산으로 구성된 고분자물질로 생명체가 살아가는데 필수적인 역할을 수행한다. 예를 들어 p53 이라는 단백질은 암을 억제하는 기능을 하고, 많은 효소는 우리가 섭취한 음식물로부터 우리 몸에 필요한 복잡하고 다양한 물질과 에너지를 효율적으로 생산하는 역할을 한다. 이러한 단백질은 의약용, 치료용 혹은 산업용으로 광범위하게 사용되고 있다.
특히, 단백질의 일종인 효소(Enzyme)는 최근 선진국을 중심으로 대대적인 연구개발 및 산업화가 추진되고 있는 화이트 바이오테크(White Biotech)분야의 핵심으로 부각되고 있다. 세계적 화학기업, 제약기업, 생명공학 기업들이 산업 목적에 맞는 효소의 개발에 집중적으로 투자하고 있다. 그러나 대부분의 단백질은 특이성, 리간드와의 친화성, 안정성, 활성 등이 실제 의약용이나 산업적으로 사용하기에는 많은 한계점을 가진다. 이를 해결하기 위해 목적에 맞는 특성이나 새로운 기능을 지닌 단백질을 설계하고 창출하는 연구가 지속적으로 진행되어 왔지만 아직까지 만족할 만한 연구 결과는 보고되지 않았다.
金 교수팀은 생물체내에는 수많은 종류의 단백질이 존재하지만 기본적인 골격의 수는 한정되어 있어 서로 다른 기능을 수행하는 단백질들의 경우라도 그 골격은 유사하거나 동일한 경우가 많다는 점에 착안, 새로운 기능을 가진 단백질 설계에 필요한 요소를 기존의 단백질 골격에 동시에 조합적으로 삽입함으로써 신 기능 단백질을 제조할 수 있는 기술을 성공적으로 개발할 수 있었다.
개발된 신 기능 단백질 설계 기술은 앞으로 새로운 단백질 의약품 개발, 산업용 효소 개발, 합성 생물학, 화이트 바이오테크놀러지(White Biotechnology), 생유기 합성 및 단백질 공학 분야에서 광범위하게 활용되어 생명공학의 산업화에 크게 기여할 것으로 기대된다.
또한, 이번 연구결과는 자연계에서 단백질이 어떠한 진화 과정을 거쳐 현재와 같은 다양한 단백질이 존재하게 되었는지에 대한 중요한 해답을 주고 있어 기초 생명과학 분야에서도 매우 획기적인 연구결과로 인식되고 있다.
사이언스誌 투고의 주역인 金 교수는 최근 국제공학회(ECI)에서 주관하는 국제학술대회인 제 18차 효소공학 학술대회(Enzyme Engineering)를 지난해 10월 국내에 유치하여 성공적으로 개최하는 등 국제적으로도 활발한 활동을 펼치고 있다.
2006.01.27
조회수 23389