-
모바일하버 사업, 올해의 세계 10대 최고 창업아이디어로 선정돼
- 호주 창업관련 웹사이트 StartupSmart.com.au, 10대 아이템 중 2위로
우리 대학이 연구개발 중인 모바일하버 사업이 ‘2011년 세계 10대 최고 창업아이디어’ 중 2위 아이템으로 선정됐다.
모바일하버 사업이란 수심이 깊은 해상에 정박 중인 대형 컨테이너선의 컨테이너를 하역해 육상 부두로 이송하거나 육상의 컨테이너를 해상의 컨테이너선에 이송하고 선적하는 ‘움직이는 항구’ 개념을 적용한 세계 최초의 해상운송관련 연구개발사업이다.
KAIST는 세계적인 창업관련 전문 웹 사이트인 ‘스타트업스마트(StartupSmart.com.au)’가 최근 발간한 뉴스레터 12월호에서 ‘모바일하버 시업’을 ‘2011년 10대 최고 창업아이디어’ 중 2위로 선정해 발표했다고 27일 밝혔다.
‘스타트업스마트’는 창업가를 꿈꾸거나 창업을 준비하는 전 세계 각국의 예비 창업주와 경영자를 대상으로 창업관련 각종 뉴스와 정보를 제공하고 있는 전문 웹 사이트로서 호주 멜버른에 위치해 있다.
‘2011년 세계 최고 10대 창업아이디어’ 로 꼽힌 ‘모바일하버 사업’은 지난 2007년 서남표 총장이 KAIST와 우리나라가 잘되기 위해서는 남들이 하지 않는 역발상적이면서 도전적인, 그리고 여러 학문과 기술이 융합된 종합적인 대형 연구과제를 다뤄야 한다는 생각으로 아이디어를 제시해 시작된 프로젝트다.
KAIST는 이후 2009년부터 정부지원과 자체예산을 투입해 원천기술과 실용화기술을 개발 중인데 올 6월 말 KAIST는 부산 부경대 앞 해상에서 선박 간에 안전한 도킹 후에 컨테이너를 상·하역하는 첨단 신기술을 선보인 바 있다.
그동안 KAIST가 중점적으로 개발해 온 모바일하버 관련 핵심기술은 ‘안정화 크레인 기술’인데 이 기술은 파도와 바람에 의해 흔들리는 상황에서도 안정적으로 컨테이너를 들어 올리고 원하는 위치에 내려놓는 기술이다.
지난 6월 시연회에서 KAIST가 선보인 크레인의 전후․좌우․상하 흔들림을 제어하는 새로운 개념의 ‘다단 트롤리(trolley)’와 스스로 위치를 보정하여 컨테이너를 체결하는 ‘지능형 스프레더(spreader)’는 기존 육상 크레인에서는 볼 수 없었던 새로운 기술들 이다.
이와 함께 각종 센서(sensor)를 통해 스프레더 및 상대선박의 움직임을 측정하고 실시간으로 컨테이너를 추적할 수 있도록 모바일하버에 최적화된 소프트웨어 및 신호처리 알고리즘이 적용됐다.
아울러 KAIST가 이날 선보인 ‘선박 간 자동도킹 기술’도 필수적이다. 수심이 낮아 항만에 접안할 수 없는 대형 컨테이너선의 하역작업을 위해서는 안정화 크레인 기술과 함께 먼 바다에 떠있는 컨테이너선에 모바일하버가 다가가 측면에 밀착해야 하기 때문이다.
파도와 바람의 영향으로 끊임없이 운동하는 두 선박 간에 안전하고 신속하게 도킹하여 일정 거리를 유지하는 것은 고난이도 기술로서, 사람이 로프를 주고받아 계류하는 기존방식은 사고 위험성이 높기 때문에 대형선박 간 해상 도킹은 사실상 포기돼 왔다.
이 같은 여러 문제에도 불구하고 KAIST는 ‘움직이는 항구인 ’모바일하버‘ 관련기술에 대한 연구와 기술개발에 나선지 2년만인 올 6월 성공적인 시연을 계기로 그동안 야심차게 추진해 온 모바일하버 관련기술의 상용화 가능성을 확보하는 데 성공했다는 게 산업계와 학계의 평이다.
또 모바일하버 관련 원천기술을 대형 기계시스템으로 구현했다는 점에서 많은 전문가들은 관련기술의 상용화에 더욱 탄력이 붙을 것으로 내다보고 있다.
이와 관련, KAIST는 모바일하버 관련기술이 본격 상용화될 경우 기존 해상물류시스템에 비해 새로운 해상운송수단의 옵션을 제공할 수 있어 다양한 용도와 함께 경제적으로 사용될 것으로 기대하고 있다.
수심이 낮거나 항만시설 미흡으로 대형 컨테이너선이 항만에 접근하지 못할 경우에도 해상에서 직접 상·하역이 가능하기 때문이다.
뿐만 아니라 대규모 항만공사로 인해 발생하는 환경파괴 문제를 해결할 수 있으며 해난사고 발생 시 인명구조 작업용으로도 사용할 수 있어 브라질, 인도네시아, 베트남, 중동, 아프리카 각국에서 지대한 관심을 보이고 있다는 게 KAIST의 설명이다.
한편 호주 ‘스타트업스마트(StartupSmart.com.au)’가 올 12월호 뉴스레터에서 발표한 ‘2011년 10대 최고 창업아이디어’에는 날씨에 데이터를 수집하고 대형 컴퓨터 시뮬레이션을 통해 얻은 기상정보를 농부와 농작물 관련 회사에 제공해주는 미국
The Climate Corporation사의 ‘기후예측안내서비스’가 1위로 선정됐다.
이어 음주측정 기구와 같이 사람의 내쉬는 숨을 통해 결핵감염 여부를 쉽고도 정확하게 판독할 수 있는 인도의 ‘전자 코(E-Nose)’가 3위를, 딸기와 블루베리 등의 농작물을 훑어가면서 익은 농작물만 수확하는 ’로봇 농작물 수확기‘가 4위를 차지했다.
2011년 세계 10대 최고 창업아이디어
(출처: http://www.startupsmart.com.au/planning/10-best-start-up-ideas-of-2011/201112224944.html)
1위 기후예측안내서(WeatherBill): 농작물이 기후에 의해 망칠 수 있는 확률을 예측하는 서비스 제공. 구글도 이 창업회사(미국, 회사명: 기후주식회사, The Climate Corporation)의 투자사 가운데 하나임. 투자액 규모는 현재 4,200만 달러. 날씨에 관한 데이터를 수집하고, 대형 컴퓨터 시뮬레이션을 통해 얻은 자료를 농부/농작물 회사에 제공함으로써, 경작 농작물에 필요한 강수량이나 절기별 기후를 예측해 경작 손실에 대비한 보험료 등을 책정하는데 도움을 줄 수 있음. 홍수 등 기후로 인한 재해도 예측함으로써 (농작의) 기후관련 위험부담을 줄여주기도 함.
2위 모바일하버(Mobile Harbor): 한국의 과학자들은 항만운송업에 큰 변화를 가져올 발명품을 시연했다고 하는데 바로 먼 바다로 나가는 이동항구다. 모바일하버는 대형 컨테이너 선박이 먼 바다에서 화물을 선적하고 하역할 수 있어, 복잡한 항만시설 사용을 위해 비싼 비용을 지불하면서까지 항구에서 대기하고 있어야만 하는 선박들의 어려움을 해소할 수 있다. 모바일항구는 대형바지선 모양의 흘수선(Shallow Draught)으로서 안정화 장치가 장착된 크레인을 가지고 있다. 또한, 모바일하버는 해상에서 임시 보호소를 제공할 수 있는 기능, 즉 해난 시 인명 구조작업용으로도 사용될 수 있다. ‘스마트 기능’이 겸비된 크레인은 출렁이는 바다 위에서도 화물을 흔들리지 않고 안정적으로 선박하고 하역할 수 있다. KAIST 김경수 교수에 의하면, 모바일항구는 브라질, 인도네시아, 중동, 아프리카 등에서 많은 관심을 받고 있다고 했다.
3위 전자 코(E-Nose): 인도 연구자들은 음주측정 기구처럼 사람의 ‘내쉬는 숨’을 통해 결핵감염 여부를 쉽고도 정확하게 판독할 수 있는 ‘전자코’를 개발했다고 함. 배터리를 사용하는 휴대용 전자 코는 결핵치료 및 감염 예방에 많은 도움을 줄 것임.
4위 로봇 농작물 수확기(Robotic Harvester): 딸기, 블루베리 등의 농작물 밭을 훑어가면서 익은 농작물만 골라서 수확하는 로봇 수확기는 그 동안 사람의 손에 의존했던 농작물 수확에 따른 일손을 크게 줄일 수 있는 발명품. 파종뿐만 아니라, 농작물을 따서 등급을 매기고, 선별 포장하는 작업을 통해 기존 노동력의 95%를 절감할 수 있음.
5위 인공강하(Airdrop): 사막 같은 건조한 지대에서도 농사를 가능케 하는 관계시스템. 사막에 살고 있는 딱정벌레(Namib Beetle)에서 영감을 얻음. 이 벌레는 밤새 사막에 내린 이슬을 등껍데기에 모아서, 이를 수분으로 활용해 생존. 이 시스템은 아주 건조한 지역이라도 대기 중에는 수분이 포함되어 있는데, 대기 온도를 낮춰 이들 수분을 응축시켜 물로 활용함. 땅속에 매설된 여러 개의 관에 공기를 투하시켜 땅속 저온에서 공기 중 수분이 이슬처럼 응축되면, 이를 수집해 농작물에 바로 제공함. 저렴한 비용으로 가뭄에 대처할 수 있는 대안이 될 수 있음.
6위 스마트초인종(Smart Bell): 13세 영국 소년이 개발, 집주인이 집을 비우더라도
핸드폰으로 원격으로 초인종에 대답할 수 있음. 또한, 주인이 대답할 때 배경
소음도 만들 수 있어, 집주인이 마치 집에서 인터컴을 통해 대답하는 것처럼
들려 절도나 강도 등을 예방할 수 있음. 또, 집으로 배달되는 물건을 접수할
때도—택배원에게 집 위치를 안내한다든지, 어디에 물건을 두라는 등—용이함.
7위 투자정보교환사이트(Investable): 호주 상장기업에 관한 모든 주식투자정보를
실명회원제를 사용해 기밀정보를 제외한 기타 투자와 관련된 모든 실질적인
정보를 정직하게 공개하고 토론하는 사이버공간. 투기조장을 막고 건전한
투자문화를 선도하며, 정확한 정보를 공유할 수 있는 이점이 있음.
8위 신혼부부를 위한 서비스(Essential Groom): 예비부부 혹은 신혼부부가 필요로 하는 일체의 정보를 온라인으로 제공하는 서비스. 즉, 신혼부부의 옷 입는 방법부터 시작해서 허니문, 혼인계약서 작성, 결혼식 및 파티 준비 등에 필요한 정보를 제공.
9위 테크노와이티(TechnowaiT) 1-2-3-GO!: 캐나다 퀘벡에 위치한 창업회사 테크노와이티(TechnowaiT)에서는 환자들이 병원에서 대기하는 시간 동안 다른 볼일을 볼 수 있도록 실시간으로 대기시간을 알려주는 서비스. 날로 늘어나는 의료환자의 병원대기시간에 따른 불편함을 해소. 환자가 병원에 도착해 등록을 하게 되면, 핸드폰 전화를 통해 실시간으로 대기 시간 및 진행상황을 통보해줌.
10위 휴대용 저울(Weight To Go): 미국의 한 창업회사는 짐가방에 부착된 휴대용 스마트 저울을 개발함. 디지털 저울, 가방주인 이름표 및 열쇠의 세 기능이 겸비된 일종의 스마트 휴대용 가방. 저울은 휴대용 짐 가방 손잡이 밑에 부착되어 손잡이를 몇 초 동안 당겼다가 놓으면 가방에 부착된 디스플레이에 무게가 표기됨.
2011.12.27
조회수 19913
-
전기적‧자기적 성질 동시에 갖는 신물질 물성 규명
- 네이처 커뮤니케이션 발표, “현존 저장장치(RAM)의 장점만을 취한 차세대 메모리 개발 가능성 열어”-
국내 연구진이 상온에서 전기적 성질(강유전성)과 자기적 성질(자성)을 동시에 갖는 새로운 물질인 ‘다강체’의 물성을 규명하여 현존하는 저장장치(RAM)의 장점만을 취한 차세대 비휘발성 메모리 개발에 새로운 가능성을 열었다.
양찬호 교수가 주도하고 박재훈 교수(포스텍), 정윤희 교수(포스텍) 및 김기훈 교수(서울대) 등이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 직무대행 김병국)이 추진하는 중견연구자지원사업(핵심연구)의 지원을 받아 수행되었고, 연구결과는 세계 최고 권위의 과학전문지 ‘네이처(Nature)’의 자매지인 ‘네이처 커뮤니케이션(Nature Communications)"에 11월 29일자로 게재되었다. (논문명: Concurrent transition of ferroelectric and magnetic ordering near room temperature)
양찬호 교수 연구팀은 다강체(비스무스 철산화물)를 단결정 박막으로 만들 때 발생하는 압축 변형의 결과로, 강유전* 상전이와 자성 상전이가 같은 온도**에서 동시에 일어나는 새로운 물질의 상태를 발견하였다.
*) 강유전(Ferroelectricity) : 전기장을 가하지 않아도 자연 상태에서 양이온과 음이온으로 분리되는 성질
**) 상전이(Phase transition) 온도 : 물질이 갖는 물성의 상태인 상(像, phase)이 특정 온도에서 바뀌기도 하는데, 그 온도를 지칭함
강유전체는 대용량 데이터를 저장(D램)할 수 있으면서 작동 속도가 빠르며(S램) 전원 없이도 데이터가 지워지지 않는(플래시 메모리) 장점만을 고루 갖춘 차세대 반도체 메모리(F램)의 핵심 물질이고, 자성체는 자기를 이용해 정보를 기억하는 새로운 형태의 기억소자(M램)의 필수적인 요소이다.
이 두 이질적인 현상이 하나의 물질에서 동시에 발생하는 것은 대단히 희귀한 일로서, 특히 각각의 상전이 온도가 일치한다는 것은 진성(proper) 강유전체에서는 전례가 없는 것이다.
이것은 전기적 성질과 자기적 성질이 상호 연관성이 강하다는 것을 의미하는 것으로, 전기적으로 자성을 조정하거나 자기장으로 유전 분극을 조정하는 것을 기반으로 한 신개념 비휘발성 메모리 소자 개발에 한걸음 다가선 것으로 평가된다.
기존의 비스무스 철산화물은 탁월한 상온 강유전성에도 불구하고 자기-전기 상호작용에는 의문점이 있었다. 그러나 양 교수팀이 새롭게 발견한 상태는 기존의 물질과는 결정구조가 다른 신물질로서, 발현되는 모든 물성이 획기적으로 다르며, 전기와 자기 상전이의 일치라는 뜻밖의 결과를 확인하였다. 전기적‧자기적 질서의 상전이 온도가 같은 유일한 진성 강유전 물질의 발견은 자기-전기 상호작용을 연구할 새로운 모델 물질을 찾았다는데 의미가 있다. 또한 상전이 온도가 상온이라는 점은 응용 가능성이 크다는 점을 시사한다. 양찬호 교수는 “이번 연구결과를 통해 현재 응집물질물리 및 재료과학 분야의 한 화두인 다강체 연구에서 우리 연구팀이 새로운 물질을 발견하고 주요 물성을 밝혀냄에 따라, 세계 다강체 연구에서 선도적 입지를 차지할 수 있을 것으로 기대한다”고 연구의의를 밝혔다.T-BFO 박막의 강유전 도메인 구조
2011.12.22
조회수 16939
-
스트레스에 의해 생긴 잔주름의 숨겨진 비밀을 밝혀내다
- Nature Materials 표지논문 선정, ‘자연을 닮은 구조물’ 제작에 새로운 가능성 열어-
신진 여성과학자가 스트레스에 의해 생긴 잔주름이 성장하면서 깊은 주름으로 발전하는 전 과정을 가시화하여 그 원인을 규명함으로써 표면주름 제어기술 개발에 새로운 전기를 마련하였다.
카이스트 김필남 연구교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 직무대행 김병국)이 추진하는 학문후속세대양성사업(박사후 국외연수)의 지원을 받아 미국 프린스턴 대학에서 수행되었고, 연구결과는 세계 최고 권위의 과학전문지 ‘네이처(Nature)’의 대표적인 자매지인 ‘Nature Materials" 12월호(12월 1일자)에 표지논문으로 선정되는 영예를 얻었다.
김필남 박사 연구팀은 얇은 박막이 극심한 스트레스를 받으면서 생기는 잔주름이 깊은 골짜기 형태의 접힌 구조물로 변형해가는 일련의 과정을 밝히고, 이를 통해 자연계에서 나타날 수 있는 다양한 복합 구조물을 모방해내는 기반기술을 개발하는데 성공하였다.
표면주름은 여러 개로 적층된 구조에서 그 중 어느 한 층이 극도로 빠른 팽창(또는 수축)이 일어날 때 그 불안정성으로 나타나는 구조이다. 이러한 불안정성을 갖는 적층구조는 동․식물의 표피(피부)와 같은 생물의 조직뿐만 아니라, 최근 활발히 연구되고 있는 구겨지는 플렉시블 디스플레이(또는 소자)에서도 흔히 나타난다.
특히 생체조직에서는 주름이 지속적으로 성장하는 과정을 겪는데, 지금까지 이러한 이차원적인 표면에서 잔주름의 성장이 만들어내는 삼차원적인 구조의 변형에 대해서는 밝혀진 바가 없다. 이번 연구를 통해서 김 박사팀은 주름(wrinkle)이 곡률이 극심한 접힘(fold)이라는 구조로 변형되어가는 메커니즘을 규명하였다.
또한 연구팀은 실시간 분석을 통해 잔주름 구조물이 일련의 자기조직화 과정*을 거쳐 궁극적으로 그물망 형태의 접힘 구조물로 변형된다는 사실을 밝혀냈다. *) 자기 조직화 과정 : 계층적 방식(Hierarchical process), 자발적 제어과정 (Self-regulation process), 연속적인 구획화(Subdivision process) 및 분지화(Branching process) 등
흥미롭게도 연구팀은 이 과정을 통해 만들어진 구조는 건조한 땅이 갈라지면서 만들어내는 균열구조와 매우 흡사하고, 나뭇잎에서 볼 수 있는 맥관구조 뿐만 아니라, 인체에서 볼 수 있는 혈관 네트워크와도 매우 흡사한 구조를 가지고 있다는 사실을 발견하였다.
이번 연구는 무생물뿐만 아니라 생물계에서 보여주는 다양하지만 일관된 구조(그물망 구조 등)의 발생 원리를 기계적․물리학적 입장에서 재해석할 수 있음을 보여주는 결과이다. 따라서 이번 연구 결과는 모든 발생과정을 볼 수 없는 생물계에서의 구조화, 패턴화를 이해하는데 크게 기여할 것으로 평가된다.
김필남 박사는 “이번 연구는 오랫동안 연구되어왔던 ‘주름 또는 접힘’이라는 생물학적, 자연발생적 구조물을 이해하고 직접 제어․조절하여 ‘자연을 닮은 구조물’을 보다 쉽게 만들어 낼 수 있는 새로운 가능성을 제시하였다”고 연구의의를 밝혔다.
2011.12.20
조회수 18901
-
LED의 새로운 발견, 형광체 없이 다양한 색깔의 빛 낸다!
- 나노 피라미드 반도체에서 복합 에너지 구조가 형성됨을 규명 -
- 형광체 없는 단일 칩 다중 파장 LED 개발 길 열어 -- ‘어드밴스드 머티리얼스’ 12월호 표지논문 선정 -
우리 학교 물리학과 조용훈 교수팀이 나노미터 크기의 육각 피라미드 구조를 적용한 LED 소자에서 다양한 색깔의 빛을 낼 수 있는 현상을 규명했다.
빛의 혁명을 주도하고 있는 LED(발광다이오드)는 반도체에 전류를 흘려주면 빛을 내는 성질을 이용한 반도체 발광 소자로 조명, TV, 각종 표시장치 등에 널리 활용되고 있다.
일반적으로 조명에 주로 사용되는 백색 LED는 청색 LED칩 위에 노란색 형광체를 도포하거나 또는 복잡한 회로를 이용해 여러 개의 LED칩을 동시에 구동해야 백색 빛을 낼 수 있다.
조용훈 교수 연구팀은 반도체에 매우 작은 육각 피라미드 구조를 만들고 LED 소자를 구현해 전류를 흘려주면 육각 피라미드의 면, 모서리, 꼭지점에서 각각 다른 에너지 크기를 갖는 복합구조가 형성된다는 현상을 발견했다.
위치에 따른 에너지 차이로 인해 피라미드의 면, 모서리, 꼭지점에서 각각 청녹색, 노란색, 주황색의 빛이 발생했는데 이러한 특성은 백색 LED 뿐만 아니라 다양한 빛을 낼 수 있는 가능성을 보여준 것이다.
[그림 1] (상) 전류 구동에 의해 발광하는 나노 피라미드 LED 개념도 및 LED 발광 사진. (하) 나노 피라미드의 위치에 따라 서로 다른 차원을 갖는 양자 구조에서 다른 파장의 빛이 방출됨을 보이는 고해상도 발광 이미지.
따라서 LED에 나노 피라미드 구조를 적용하면 일반적인 넓은 파장대역을 갖는 발광이 전류 구동만을 통해서도 가능해지기 때문에 형광체를 사용하지 않으면서도 단일 LED칩에서 다양한 색상의 빛을 낼 수 있는 새로운 개념의 발광소자 개발이 가능할 것으로 기대된다.
또한, 기존 LED는 다양한 색을 내기 위해 형광체를 칩 위에 도포하는 구조적 특성으로 인해 빛의 에너지 효율에 제약이 있었으나, 형광체가 필요 없는 나노 피라미드구조는 이러한 단점을 극복해 더욱 밝은 빛을 낼 수 있을 것으로 예상된다.
조용훈 교수는 “나노미터 크기의 피라미드 반도체 안에서 위치에 따라 서로 다른 에너지를 갖는 흥미로운 현상을 이용하면, 형광체를 사용하지 않는 단일 칩 백색 LED와 함께 신개념의 나노 광원을 개발하는데 응용될 수 있을 것”이라고 말했다.
이번 연구결과는 재료 분야의 세계적 학술지인 "어드밴스드 머티리얼즈(Advanced Materials)" 12월호(1일자) 표지 논문으로 선정됐다.
KAIST 물리학과의 고영호 (1저자)와 김제형 (2저자) 박사과정 학생이 주도적으로 참여한 이번 연구는 교육과학기술부와 한국연구재단이 추진하는 WCU(세계수준의 연구중심대학) 육성사업 등의 지원을 받아 수행됐다.
연구자사진
[그림 2] 복합 양자구조를 가지고 있는 나노 피라미드 LED가 전류 구동으로 발광되는 개념도. (12월 1일자 Advanced Materials 표지 논문 그림)
2011.12.14
조회수 18588
-
실험비용 획기적으로 절감하는 빠르고 정확한 양자역학 계산 이론 개발
정유성 교수 윌리엄 고다드 교수
현재 널리 사용되고 있는 양자역학 원리를 이용하여 정확하면서도 계산시간이 획기적으로 개선된 새로운 전자밀도범함수 계산이론*이 국내 연구진에 의해 개발됐다.
*) 전자밀도범함수 계산이론 : 비교적 간단한 파동함수와 전자밀도만으로 에너지와 성질을 계산할 수 있음을 증명한 이론
우리 학교 EEWS대학원 정유성 교수(38세)와 윌리엄 고다드 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단이 추진하는 WCU(세계수준의 연구중심대학)육성사업의 지원을 받아 수행되었고, 연구결과는 자연과학분야의 권위 있는 학술지인 ‘미국립과학원회보(PNAS)’ 11월 23일자 온라인으로 게재되었다.
정유성 교수와 고다드 교수는 기존의 양자계산의 문제점인 계산시간과 부정확한 예측으로 인한 결과의 신뢰성이 떨어지는 단점을 보완하여, 정확하면서도 빠른 전자밀도범함수 이론과 알고리즘을 개발하였다.
양자역학 계산법 중 파동함수*를 이용하면 정확도가 높은 반면에 계산시간도 빠르게 증가해 수백-수천 개의 원자를 갖는 거대 분자에 적용하기 어렵고, 상대적으로 계산량이 적은 전자밀도를 변수로 사용할 경우 적용할 수 있는 분자의 크기는 증가하지만 정확도가 떨어지는 단점이 있었다.
*) 파동함수(波動函數) : 양자역학에서 물질입자인 전자·양성자·중성자 등의 상태를 나타내는 양
전자들의 상호작용은 스핀*이 같은 전자들끼리의 상호작용과 스핀이 다른 전자들끼리의 상호작용으로 나뉘는데, 파울리의 배타 원리에 의해 스핀이 다른 전자 사이의 거리가 더 가까우므로 스핀이 다른 전자들의 상호작용이 더 크다. 연구팀은 이 점에 착안하여, 기존에 존재하던 정확한 계산법에서 스핀이 다른 전자 사이의 상호작용을 중점적으로 계산하여 속도를 향상시켰다.
*) 스핀(spin) : 입자의 기본성질을 나타내는 물리량 중 하나로, 입자의 고유한 운동량을 나타냄. 소립자들의 특징을 밝히는 중요한 물리량임
또한 전자들의 상호작용은 국소성을 띠기 때문에 멀리 떨어진 전자 사이에는 상호작용이 거의 없어서 이들을 무시하더라도 총 에너지에 영향을 미치지 않는다는 점에 착안하여, 계산시간을 최대 100배이상 단축시키는 알고리즘을 개발하였다. 예를 들어, 기존의 계산방법으로는 탄소 200개와 수소 402개로 이루어진 알케인(aklane) 분자를 정확히 계산하는데 6개월이 걸린 반면, 새로운 방법론을 이용하면 비슷한 정확도로 하루(24시간)면 계산할 수 있다.
정유성 교수는 “그동안 국내의 계산과학 및 재료 설계 커뮤니티가 응용 연구에 주로 집중하여 짧은 시간 동안 훌륭한 결과를 많이 도출한 반면, 상대적으로 긴 시간을 요구하는 기초 방법론이나 소프트웨어 개발에서는 국제경쟁력이 뒤처져 있는 추세였다. 그러나 이번 연구는 기존의 방법들보다 월등한 정확도와 속도를 가진 방법론을 국내에서 개발했다는 점에서 의미가 크다”고 연구의의를 밝혔다.
아울러 이번에 개발된 방법론은 큐켐(Q-CHEM)이라는 상용 소프트웨어 패키지를 통해 일반연구자들에게 공급될 예정이다.알케인(alkane) 분자의 크기에 따라 본 연구에서 제시한 새로운 방법론(local XYGJ-OS)과 기존의 방법론의 계산 시간을 비교한 그래프. local XYGJ-OS는 전자 간 상호작용의 국소성을 이용해 계산 시간을 낮춘 방법이다.다양한 양자계산 방법과 본 연구에서 제시한 XYGJ-OS 방법의 오차. 233개 분자의 생성열을 실험값과 대조하여 오차의 절대값을 평균하였다. B2PLYP부터 XYG3까지의 방법 및 G2, G3 방법은 XYGJ-OS에 비하여 훨씬 많은 시간을 소모한다.
2011.11.29
조회수 16376
-
꿈의 신소재인 그래핀의 결정면 관찰 신기술 개발
(왼쪽부터) 정현수 박사과정생, 김윤호 박사, 김대우 박사과정생
- 네이처 나노테크놀로지誌 발표,“그래핀 상업화를 위한 핵심 난점 해결”-
꿈의 신소재로 잘 알려진 그래핀의 결정면*을 간편하면서도 더 넓게(대면적으로) 관찰할 수 있는 새로운 기술이 국내 연구진에 의해 개발되었다.
※ 결정면(crystal face) : 결정의 외형을 나타내는 평면으로 격자면과 평행인 면
정희태 석좌교수(한국과학기술원, 교신저자)가 주도하고 김대우 박사과정생, 김윤호 박사(공동1저자), 정현수 박사과정생(제3저자)이 참여한 이번 연구는 교육과학기술부와 한국연구재단이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nature Nanotechnology’ 온라인 속보(11월 20일)에 게재되었다. (논문명: Direct visualization of large-area graphene domains and boundaries by optical birefringency)
정희태 교수 연구팀은 LCD에 사용되는 액정의 광학적 특성*을 이용해, 그래핀 단결정의 크기와 모양을 대면적에 걸쳐 쉽고 빠르게 시각화할 수 있는 기법을 개발하였다. 특히 그래핀의 단결정을 시각화함으로써, 단결정에서 얻을 수 있는 이론값에 가장 가까운 전기전도도를 직접 측정하는 쾌거를 이루었다.
※ 광학적 특성 : 어느 물질에 빛을 통과시키거나 반사시킬 때 생기는 특성
그래핀은 가장 우수한 전기적 특성이 있으면서 투명하고, 기계적으로도 안정하면서 자유자재로 휘어지는 차세대 전자소재이다. 그러나 현재 제조되고 있는 그래핀은 다결정성을 지니고 있어, 단결정일 때보다 상당히 낮은 전기적․기계적 특성을 보인다. 이것은 그래핀의 특성이 결정면의 크기와 경계구조에 큰 영향을 받기 때문인 것으로 알려져 왔다.
따라서 우수한 특성을 갖는 그래핀을 제조하기 위해서는 그래핀 결정면의 영역(도메인)과 경계를 쉽고 빠르게 관찰하는 것이 향후 그래핀의 물성을 크게 향상하고 상업화하기 위해 꼭 필요한 핵심기술이다.
연구팀은 그래핀을 쉽게 대면적에서 관찰할 수 있는 기법을 개발하여 그래핀 상용화분야에서 원천기술을 획득하게 되었고, 그래핀을 이용한 투명전극, 플렉시블 디스플레이, 태양전지와 같은 전자소자 응용연구에도 한 걸음 다가설 수 있게 되었다.
정희태 석좌교수는 “이번 연구는 우리나라가 보유한 세계 최고의 액정배향제어기술*을 토대로, 대면적에 걸쳐 그래핀의 결정면을 누구나 쉽게 관찰할 수 있는 방법을 제시하였다는 점에서 큰 의미가 있다.
이것은 학계와 산업계의 가장 난제 중 하나인 대면적에서의 그래핀 특성평가에 큰 전환점이 되어 양질의 그래핀 제조에 큰 도움을 줄 것이고, 그래핀을 이용한 미래형 전자소자 개발에 한걸음 다가갈 수 있을 것”이라고 연구의의를 밝혔다. ※ 액정배향제어기술 : 액정의 방향을 일정하게 만드는 기술
(좌) 그래핀 결정면을 따라 배향된 액정분자 배향 모식도 (우) 편광현미경으로 관찰된 실제 그래핀 결정면의 모습
2011.11.28
조회수 21978
-
박인규 교수, 전기제어와 온도차를 이용한‘나노분자 제어기술’개발
- ▲나노센서 개발 ▲분자조작 ▲세포자극 등 공학기술 전반에 활용 가능 -- 나노 레터스(Nano letters) 10월 호 게재 -
우리 학교 기계공학과 박인규 교수 연구팀이 최근 나노미터(10억분의 1미터) 크기 공간에서 전기제어와 온도차를 이용해 나노분자를 제어하는 원천기술 개발에 성공했다고 19일 밝혔다.
박 교수가 이번에 개발한 기술은 ▲고밀도 전자회로 패터닝 ▲고성능 다중물질 나노센서 개발 ▲단백질·유전자 조작 ▲ 세포조작 및 자극 등 다양한 분야에 응용될 것으로 기대된다.
기술적 한계로 나노미터 크기의 섬세한 분자제어가 어려워 개발이 더뎠던 초소형‧휴대형 센서 개발에도 커다란 변화를 가져올 것으로 예상된다.
연구팀은 나노패터닝 공정으로 고밀도·고정렬 나노와이어를 만들어 각각의 와이어에 전기를 제어하고 빠르게 온도를 조절해 화학반응 제어를 실현했으며 이를 통해 나노분자를 정밀하고 신속하게 조절가능하다는 것을 실험으로 입증했다.
박인규 교수는 “이 기술은 나노공간에서 선택적이고 개별적인 온도조절로 바이오 분자조작, 선택적 회로집적 등에 응용돼 화학센서의 성능향상, 초소형 센서 개발 등 IT/ET 융합기술 발전에 크게 기여할 수 있을 것”이라고 말했다.
이번 연구는 교육과학기술부의 일반연구자사업 및 HP 오픈 혁신 연구 프로그램(HP Open Innovation Research Program)을 통해 수행됐으며, 연구결과는 세계적 권위의 나노기술 학술지인 ‘나노 레터스(Nano Letters)’ 10월 3일자 온라인 판에 게재됐다.
한편 , 이번 연구에는 KAIST 박 교수를 비롯해 김춘연 기계공학과 박사과정 학생, 한국표준연구원 이광철 박사, HP의 지용 리(Zhiyong Li), 스탠 윌리암스(Stan Williams) 박사가 참여했다.
o 그림 1 : 나노와이어를 선택적 온도조절한 후 반응 이미지를 촬영한 모습
o 그림 2 : 나노크기 공간에서 선택적 온도조절을 통한 화학물질 반응/조작 예시, 예1) 고분자 경화, 예2) 나노물질 합성
2011.10.19
조회수 17104
-
박정영 교수, 핫전자 태양전지 원천기술 개발
- Nano Letters 발표, “에너지 손실을 최소화한 핫전자 태양전지 개발 가능성 열어”-
태양광을 흡수하여 생성되는 핫전자 태양전지 원천기술이 국내 연구진에 의해 개발되었다.
우리 학교 EEWS 대학원 박정영 교수(41세, 교신저자, 지속가능한 에너지공학기술사업단 해외학자)가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nano Letters’ 온라인 속보(9월 14일)에 게재되었다. (논문명 : Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes)
박정영 교수팀은 태양광을 흡수하여 생성되는 핫전자와 표면플라즈몬의 상관관계를 규명하였다.
박 교수팀은 금속박막과 산화물 반도체로 이루어진 나노다이오드를 이용해 빛에 의해 표면에 여기된 핫전자를 검출하고, 나노다이오드 금속박막의 표면처리를 통해 수십 나노미터 크기의 나노섬 형태로 변형하였는데, 이러한 나노섬은 표면플라즈몬을 보여준다.
연구팀은 나노다이오드에 검출된 핫전자를 측정하여 표면플라즈몬에 의한 핫전자의 증폭을 관찰하였다. 이는 표면플라즈몬이 핫전자의 생성을 극대화시키고, 이 원리는 태양전지의 효율을 높이는데 활용될 수 있다.
이 연구에는 EEWS 대학원의 이영근 석사과정생 (제 1저자)와 정찬호 박사과정생 (제 2저자) 이 참여하였다.
박정영 교수는 “핫전자를 정확히 이해하고 측정하는 것은 에너지 손실과정을 근본적으로 이해할 수 있도록 도와준다는 점에서 표면과학 및 에너지공학에서 매우 중요하다. 이번 핫전자 원천기술의 개발은 핫전자를 이용한 고효율 에너지 전환소자 개발에 응용이 될 수 있다”고 연구의의를 밝혔다.
<그림>표면플라즈몬에 의해서 증폭된 핫전자의 측정을 위한 나노다이오드의 구조
2011.10.06
조회수 22059
-
스마트 나노센서를 이용한 신약 효능 분석기술 개발
- 사람 몸속에서의 효능을 실시간 모니터링 할 수 있어 - - 나노-바이오-영상-분자화학 등이 융합 -
KAIST가 신약 효능을 분석하는 새로운 기법의 기술을 개발했다.
우리 학교 생명과학과 이상규 박사가 생체나노입자를 사람세포에 적용해 살아있는 세포에서 신약의 효능을 실시간으로 모니터링 하는 기술을 개발했다.
이 기술을 이용하면 사람 몸속에서도 신약의 효능을 보다 정확하게 파악할 수 있을 것으로 기대된다.
지금까지는 신약 후보물질을 몸속으로 투여하고 세포를 추출한 후 효과를 분석했다. 그러나 세포를 용해한 후 세포의 기능이 정지된 상태에서 분석함으로써 예상치 못했던 부작용으로 대부분의 후보물질이 탈락하게 된다. 이 때문에 엄청난 비용과 노력을 들이더라도 신약개발을 성공하기가 매우 어려웠다.
연구팀은 수많은 나노입자가 서로 연결되면 커다란 복합체를 형성할 수 있다는 아이디어에 착안했다. 나노입자를 세포 내부에 적용해 본 결과 실제로 살아있는 세포 안에서 나노입자 간의 결합을 통해 복합체가 빠르게 형성되는 것을 확인했다.
형성된 복합체는 나노센서 역할을 하게 돼 약물이 세포 내에 투여되는 과정에서 약물 타겟과의 결합을 실시간으로 관찰할 수 있었다.
연구팀은 이 나노센서 기술을 ‘스마트한 눈(InCell SMART-i)’이라고 명명했다. 살아있는 세포 안에서 일어나는 신약의 효능작용을 한 눈에 볼 수 있기 때문이다.
이상규 박사는 “이 기술은 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술로 신약개발에 효과적으로 적용 가능한 매우 중요한 기술”이라며 “신약물질의 직접 개발을 원하는 기업으로 기술이 이전돼 상용화가 멀지 않았다”고 말했다.
한편, KAIST 생명과학과 이상규 박사와 리온즈신약연구소(주) 김태국 박사가 개발한 이 기술은 최근 세계적인 화학지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 지 9월호에 주목받는 논문(Hot Paper)으로 선정됐다.
그림1. 사람 세포 내에 도입된 스마트 나노 센서가 약물과 약물 타겟 간의 결합에 따라 세포 내에 스팟(같은 나노클러스터)을 형성하고 이를 실시간으로 탐지해 낼 수 있는 원천기술의 모식도
그림2. 약물타겟 A 또는 B가 발현되어 있는 사람세포에 약물을 처리하면 세포 내에서 약물과 약물타겟이 서서히 결합되면서 스마트 나노센서에 의해 이러한 스팟 (같은 나노클러스터) 형태로 실시간으로 센싱-감지된다. 따라서 살아 있는 사람세포 안에서 신약의 효능작용을 실시간으로 마치 비디오를 보는 것처럼 라이브로 모니터링 할 수 있는 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술이다.
2011.09.05
조회수 18350
-
고성능 플렉시블 디스플레이 기술 개발
- 금속 나노입자 펨토초레이저 소결공정을 이용한 극미세 금속패턴 제작 -- 세계적 학술지 ‘어드밴스드 머티리얼즈’ 7월호 게재 -
국내 연구진이 플렉시블 디스플레이 전자소자 제작을 위한 차세대 금속 나노패터닝 기술개발에 성공했다.
우리 학교 기계공학과 고승환·양동열 교수팀이 공동으로 연구한 이번 성과는 기존의 광식각 증착공정을 이용하지 않고 수백나노의 고정밀도 금속 패턴을 펨토초레이저 스캐닝공정을 이용해 단일 디지털 공정으로 제작하는 기술을 개발했다.
이 기술을 이용하면 다양한 기판에서 고정밀 패터닝이 가능해져 유기 전자소자 기술 등과 결합하게 되면 성능과 집적도가 우수하면서도 자유자재로 휘어질 수 있는 고성능 플렉시블 전자소자나 디스플레이 등이 실현될 수 있을 것으로 기대된다.
일반적으로 집적도가 높은 전자소자 제작을 위해서는 고비용의 노광 혹은 광식각 공정이나 고진공 전자빔 공정을 통한 금속 패턴의 제작이 필수적이다. 최근에는 잉크젯 및 롤투롤(Roll to Roll) 프린팅 기술을 이용해 직접 금속 패턴 제작이 시도되고 있다. 그러나 공정 특성상 1㎛(마이크로미터, 100만분의 1미터) 이하의 정밀도 달성에는 한계가 있어 고집적·소형화에 불리했다.
연구팀은 3~6nm(나노미터, 10억분의 1미터) 크기의 녹는점이 낮은 은 나노 입자와 열확산을 최소화할 수 있는 금속 나노입자 펨토초레이저 소결공정 (Femtosecond laser selective nanoparticle sintering, FLSNS)을 개발했다. 더불어 유리, 웨이퍼, 고분자 필름 등 다양한 기판위에 1㎛이하의 고정밀도 금속 패턴을 단일 공정으로 제작할 수 있는 기술도 개발해, 이 기술을 이용해 최소 정밀도 380nm 선폭의 극미세 금속패턴 제작에 성공했다.
연구팀은 개발된 금속 패터닝 기술을 KAIST 전기 및 전자공학과 유승협 교수팀과의 협력을 통해 유기 전계효과 트랜지스터 제작공정에 적용해, 차세대 플렉시블 전자소자 제작에 활용될 수 있는 가능성을 제시했다.
고승환 교수는 “고가의 진공 전자빔 공정을 통해서만 제작 가능했던 기존의 디지털 직접 나노패터닝 기술을 비진공, 저온 환경에서 구현함으로써 전자빔 공정을 대체할 수 있을 뿐만 아니라 향후 다양한 플렉시블 전자소자 제작으로 적용될 수 있을 것으로 기대된다”고 말했다.
이번 연구결과는 한국연구재단의 나노원천기술개발 및 신진연구 사업지원, 지식경제부의 협동사업지원을 받아 수행됐으며, 재료과학기술 분야의 세계적 권위의 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월호에 게재됐다.
※ 용어설명금속 나노패터닝 : 고밀도로 집적된 전기/전자회로 구현을 위해서는 1㎛이하의 선폭을 갖는 고정밀도 금속패턴 구현 기술이 필요하다. 이에 따라 기존의 방법이 아닌 새로운 패터닝 공정에 관한 다양한 연구가 수행 중에 있다.
광식각 증착공정 : 미세 패턴 제작으로 널리 사용되어지고 있는 공정으로 빛에 반응하는 재료에 대해 선택적으로 빛을 조사하여 미세 패턴을 제작하고 원하는 물질을 고온, 진공 조건하에서 증착하는 공정으로 기존의 디스플레이, 반도체 제작 공정으로 이용되고 있다.
유기 전계효과 트랜지스터 : 전자기기 구동회로의 핵심소자인 트랜지스터는 전류의 흐름을 선택적으로 조절하는 역할을 한다. 트랜지스터의 구성에는 전류가 흐르는 채널로서 반도체가 필수적인데, 통상적으로는 고온처리가 필요한 실리콘 (Si)이 쓰이고 있다. 유기 전계효과 트랜지스터는 채널 물질로 박막의 유기반도체가 쓰이는 것으로서, 상대적으로 낮은 온도에서 플라스틱과 같은 다양한 기판에 제작 가능하여 유연한 전자 소자 제작에 이상적이며, 궁극적으로 소자 제작이 인쇄 방법으로 구현 될 경우 저비용 전자소자 제작에도 활용 가능할 것으로 예상되고 있다.
펨토초 레이저(femtosecond laser) : 긴 시간 동안 일정한 출력으로 레이저를 방출하는 연속형 레이저와는 달리 짧은 시간 동안만 레이저를 방출하는 것을 펄스형 레이저라고 한다. 이러한 펄스형 레이저의 방출 시간을 천조분의 1초, 즉 10-15초 까지 낮춘 것이 펨토초 레이저이다. 이러한 매우 짧은 펄스폭은 레이저가 조사되는 재료 내부에 열이 확산하는 시간(10-12s, 피코초)보다 짧기 때문에 가공시 열영향부가 작아 정밀 가공에 응용할 수 있다.
그림1. 선택적 금속 나노입자 펨토초 레이저 소결 공정
그림2. 극미세 금속 패턴
2011.08.02
조회수 21986
-
탄소나노튜브로 물이 스스로 빨려 들어가는 현상 원인 규명
- PNAS 발표, “효율성을 극대화한 차세대 해수 담수화막 활용 가능 기대”-
지금까지 현상만 알려졌을 뿐 그 원인이 정확히 설명되지 못했던, 물을 싫어하는 탄소나노튜브* 안으로 물이 스스로 빨려 들어가는 ‘반직관적 실험 현상’이 국내 연구진에 의해 규명되었다.
*) 탄소나노튜브 : 각 탄소가 3개의 다른 탄소와 결합되어 있는 흑연의 탄소 원자 배열과 같은 모양(6각형의 벌집모양)을 가지면서, 원통형으로 말아서 튜브 형태로 만든 나노(10억분의 1미터) 구조체
우리 학교 EEWS 대학원 정유성 교수가 주도하고, 캘리포니아공대 윌리엄 고다드 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업의 지원(지속가능한 에너지 공학기술사업단)을 받아 수행되었다.
이번 연구결과는 자연과학분야의 권위 있는 학술지인 ‘미국립과학원회보(PNAS)’ 7월 19일자에 게재되었고, 한 주간에 흥미로운 연구결과들을 별도로 소개하는 "This Week in PNAS", ’C&EN News" 및 "Nature Materials"의 "Research Highlights"에 선정되는 영예를 얻었다. (논문명 : Entropy and the driving force for the filling of carbon nanotubes with water)
정유성 교수팀은 물을 싫어하는 탄소나노튜브 안으로 물이 스스로 빨려 들어가는 반직관적인 실험현상의 원인이 물 분자 간의 수소결합 때문으로, 나노채널과 같은 제한된 나노공간에서는 물의 무질서도가 증가하기 때문에 발생한다는 사실을 분자동력학 계산을 통해 밝혀냈다.
일반적으로 분자가 자유로운 액체 상태에서 제한된 나노 크기에 갇힐 경우, 무질서도와 화학결합이 감소되면서 불안정한 상태가 될 것으로 예상했지만, 연구팀은 탄소나노튜브에 갇힌 물의 경우 제한된 공간에서 물 분자 간의 수소결합이 약해지면서 밀도가 낮아지고, 오히려 무질서도가 증가하여 더욱 안정되는 특이한 현상을 나타낸다는 사실을 확인하였다.
특히 연구팀은 1.1과 1.2 나노미터의 지름을 갖는 나노튜브에서는 실온(섭씨 25도)임에도 불구하고 물이 얼음과 같은 구조를 띄는 현상도 관찰하였다.
정유성 교수는 “이번 연구는 계산과학이 실험측정만으로 설명하기 어려운 나노크기의 제한된 공간에서 나타나는 다양한 현상을 규명한 좋은 예”라고 정의하고, ‘’기존의 역삼투압 막에 비해 탄소나노튜브 내에서는 물의 수송속도가 현저히 빨라 에너지 효율적인 차세대 해수 담수화막을 효율적으로 설계하는데 기여할 것”이라고 연구의의를 밝혔다.
2011.07.27
조회수 17771
-
미래의 석유화학산업, 바이오 리파이너리 시대가 온다
- KAIST 이상엽 특훈교수팀, 생명공학동향지 표지논문 게재 -
“바이오리파이너리”란 석유화학산업에서 원유의 정제를 통해 여러가지 제품을 생산하는 것과 같이, 해조류나 비식용생물자원과 같은 바이오매스(biomass)를 원료로 이용하여 여러 제품을 생산하고자 하는 개념이다.
“시스템 대사공학”을 통해 바이오매스로부터 다양한 화학물질 및 제품을 효과적으로 생산할 수 있는 새로운 기법과 전망이 국내 연구진에 의해 제시되었다.
우리 학교 이상엽 특훈교수팀이 수행한 이번 연구는 교육과학기술부 글로벌프론티어사업 차세대 바이오매스연구단의 지원을 받아 수행되었다. ※ 특훈교수 : 한국과학기술원(KAIST)에서 세계적 수준의 연구업적과 교육성과를 이룬 교수에 부여하는 호칭
그동안 기후변화, 자원고갈 등의 문제를 해결하기 위한 방안으로 바이오리파이너리에 대한 연구가 학계를 중심으로 활발히 진행되어 왔다.
특히, 연구자들은 과거 20년간 발전되어온 대사공학을 중심으로 미생물을 활용한 바이오매스의 활용가능성을 높여왔다.
그러나 아직 바이오매스로부터 여러 가지 바이오화학물질 및 소재들을 생산하기 위해서는 이들을 생산하는 미생물의 성능을 획기적으로 개선해야하는데, 기존의 대사공학연구는 주로 직관적인 방법으로 진행되어 많은 노력과 시간이 필요한 한계가 있었다.
이교수팀은 이러한 한계를 극복하기 위해 대사공학을 중심으로 시스템생물학, 합성생물학, 진화공학을 융합한 “시스템 대사공학”이라는 새로운 기술체계를 확립했다.
시스템 대사공학은 세포 기반의 각종데이터를 통합하여 생리 상태를 다차원에서 규명하고, 이 정보를 바탕으로 맞춤형 대사조절을 함으로써 고효율 미생물 균주를 개발하는 기술이다.
시스템 대사공학을 활용할 경우, 미생물을 게놈수준에서 동시다발적으로 관찰 및 조작이 가능하여 미생물의 성능 개선을 위한 시간과 노력을 획기적으로 줄이고 그 활용 가능성을 극대화 할 수 있다.
본 논문의 제1저자인 이정욱 박사는 “시스템 대사공학을 통해 미생물의 성능을 획기적으로 향상시키는 기법을 최근의 연구흐름을 중심으로 전망하고 제시하였으며, 향후 바이오리파이너리 연구에 폭넓게 활용될 것으로 기대된다.“고 연구의 의의를 밝혔다.
연구 결과는 세계적 학술지인 ‘생명공학동향(Trends in Biotechnology)‘지 8월호 표지논문으로 선정되었다.
2011.07.27
조회수 16758