< (왼쪽부터) 전기및전자공학부 황의종 교수, 황성현 박사과정, 김민수 박사과정 >
최근 실생활에 활용되는 인공지능 모델이 시간이 지남에 따라 성능이 점차 떨어지는 현상이 다수 발견되었고, 이에 따라 지속가능한 인공지능 학습 기술에 대한 필요성이 커지고 있다. AI 모델이 꾸준히 정확한 판단을 내리는 것은 더욱 안전하고 신뢰할 수 있는 인공지능을 만들기 위한 중요한 요소이다.
우리 대학 전기및전자공학부 황의종 교수 연구팀이 시간에 따라 데이터의 분포가 변화하는 드리프트 환경에서도 인공지능이 정확한 판단을 내리도록 돕는 새로운 학습 데이터 선택 기술을 개발했다고 14일 밝혔다.
최근 인공지능이 다양한 분야에서 인간의 능력을 뛰어넘을 정도의 높은 성능을 보여주고 있지만, 대부분의 좋은 결과는 AI 모델을 훈련시키고 성능을 테스트할 때 데이터의 분포가 변하지 않는 정적인 환경을 가정함으로써 얻어진다. 하지만 이러한 가정과는 다르게 SK 하이닉스의 반도체 공정 과정에서 시간에 따른 장비의 노화와 주기적인 점검으로 인해 센서 데이터의 관측값이 지속적으로 변화하는 드리프트 현상이 관측되고 있다.
시간이 지나면서 데이터와 정답 레이블 간의 결정 경계 패턴이 변경되면, 과거에 학습되었던 AI 모델이 내린 판단이 현재 시점에서는 부정확하게 되면서 모델의 성능이 점차 악화될 수 있다.
본 연구팀은 이러한 문제를 해결하기 위해, 데이터를 학습했을 때 AI 모델의 업데이트 정도와 방향을 나타내는 그래디언트(gradient)를 활용한 개념을 도입하여 제시한 개념이 드리프트 상황에서 학습에 효과적인 데이터를 선택하는 데에 도움을 줄 수 있음을 이론적으로 실험적으로 분석했다. 그리고 이러한 분석을 바탕으로 효과적인 학습 데이터 선택 기법을 제안하여, 데이터의 분포와 결정 경계가 변화해도 모델을 강건하게 학습할 수 있는 지속 가능한 데이터 중심의 AI 학습 프레임워크를 제안했다.
< 그림 1. 본 연구에서 제안한 알고리즘이 드리프트 환경에서 적절한 학습 데이터를 선택하는 예시 >
본 학습 프레임워크의 주요 이점은, 기존의 변화하는 데이터에 맞춰서 모델을 적응시키는 모델 중심의 AI 기법과 달리, 드리프트의 주요 원인이라고 볼 수 있는 데이터 자체를 직접 전처리를 통해 현재 학습에 최적화된 데이터로 바꿔줌으로써, 기존의 AI 모델 종류에 상관없이 쉽게 확장될 수 있다는 점에 있다. 실제로 본 기법을 통해 시간에 따라 데이터의 분포가 변화되었을 때에도 AI 모델의 성능, 즉 정확도를 안정적으로 유지할 수 있었다.
제1 저자인 김민수 박사과정 학생은 "이번 연구를 통해 인공지능을 한번 잘 학습하는 것도 중요하지만, 그것을 변화하는 환경에 따라 계속해서 관리하고 성능을 유지하는 것도 중요하다는 사실을 알릴 수 있으면 좋겠다ˮ고 밝혔다.
연구팀을 지도한 황의종 교수는 “인공지능이 변화하는 데이터에 대해서도 성능이 저하되지 않고 유지하는 데에 도움이 되기를 기대한다”고 말했다.
본 연구에는 KAIST 전기및전자공학부의 김민수 박사과정이 제1 저자, 황성현 박사과정이 제2 저자, 그리고 황의종 교수(KAIST)가 교신 저자로 참여했다. 이번 연구는 지난 2월 캐나다 밴쿠버에서 열린 인공지능 최고 권위 국제학술 대회인 ‘국제 인공지능 학회(Association for the Advancement of Artificial Intelligence, AAAI)’에서 발표되었다. (논문명: Quilt: Robust Data Segment Selection against Concept Drifts)
한편, 이 기술은 SK 하이닉스 인공지능협력센터(AI Collaboration Center; AICC)의 지원을 받은 ‘노이즈 및 변동성이 있는 FDC 데이터에 대한 강건한 학습’ 과제 (K20.05) 와 정보통신기획평가원의 지원을 받은 ‘강건하고 공정하며 확장가능한 데이터 중심의 연속 학습’ 과제 (2022-0-00157) 와 한국연구재단의 지원을 받은 ‘데이터 중심의 신뢰 가능한 인공지능’ 과제 성과다.
우리 대학 전기및전자공학부 심현철 교수 연구팀이 2025년 4월 12일 아랍에미리트(UAE) 정부 후원으로 개최된 아부다비 자율 레이싱 대회(Abu Dhabi Autonomous Racing League, 이하 A2RL)의 드론 챔피언십 리그( Drone Championship League, 이하 DCL)에서 세계 3위를 차지하였다. 아부다비 국립 전시 센터 마리나(ADNEC Marina) 대회장에서 개최된 본 선 대회에서는 2024년 가을 예선을 통해 선발된 14개 팀들이 참가해 실력을 겨뤘다. 참가팀들은 ▲최단 비행시간 경연(AI Grand Challenge), ▲4대동시 자율비행, ▲양쪽에서 마주 보면서 고속으로 비행하는 드래그 레이싱, ▲AI 대 인간 조정사 대결 등 총 4개 부문에서 경합을 벌였다. 그 중 8개 팀이 최단 비행시간 경연 준결승에 진출했고, 이 중 KAIST는 네덜란드 델프트공대(TU Delft), UAE 기술혁신연구소(TII), 체코 공과대학(Czec
2025-04-18효소는 세포 내에서 일어나는 생화학적 반응을 촉매하는 단백질로, 세포의 대사 과정에서 핵심적인 역할을 수행한다. 이에 따라 새로운 효소의 기능을 규명하는 것은 미생물 세포공장 구축에서 핵심적인 과제다. KAIST 연구진이 인공지능(AI)을 활용해 자연에 존재하지 않는 새로운 효소를 설계함으로써, 미생물 세포공장 구축을 가속화하고 신약·바이오 연료 등 차세대 바이오산업의 개발 가능성을 크게 높였다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 AI를 활용한 효소 기능 예측 기술의 발전 과정과 최신 동향을 정리하고, AI가 새로운 효소를 찾고 설계하는데 어떤 역할을 해왔는지 분석하여 ‘인공지능을 이용한 효소 기능 분류’를 발표했다. 이상엽 특훈교수 연구팀은 이번 연구에서 머신러닝(Machine learning)과 딥러닝(Deep learning)을 활용한 효소 기능 예측 기술의 발전 과정을 체계적으로 정리·분석하여 제공했다.
2025-04-17빅데이터와 인공지능 기반의 건설재료 품질관리 혁신 기술 제시 우리 대학 건설및환경공학과 김재홍 교수 연구팀은 시멘트 분산제의 성능을 정밀하게 평가할 수 있는 자동화 실험 시스템을 개발했다. 이 시스템은 기존 수작업 실험의 한계를 극복하고, 데이터 사이언스와 머신러닝 기법을 활용해 시멘트 기반 재료의 품질 관리를 혁신적으로 개선할 수 있는 길을 열었다. 건설재료 품질관리의 도전과제 콘크리트는 전 세계에서 가장 많이 생산되는 공학 재료지만, 시멘트와 골재 같은 원재료가 지역마다 성질이 달라 품질과 성능의 변동성이 크다. 따라서 콘크리트 재료의 성능 시험에는 많은 수의 샘플이 필요하며, 이는 노동 집약적인 작업으로 이어진다. 김재홍 교수는 "건설재료는 다른 공학 재료에 비해 변동성이 매우 크기 때문에, 재료의 성능평가 신뢰성을 높이려면 충분한 양의 데이터가 필요합니다. 이를 위해서는 많은 수의 샘플을 제조하고 테스트해야 하는데, 기존의 수작업 방식으로는 단순히 품질 검증을 위한
2025-04-14우리 대학은 세계적인 미디어 아티스트인 문화기술대학원 이진준 교수와 글로벌 아티스트 지드래곤(G-DRAGON)과의 협업을 통해, 지난 4월 9일 KAIST 우주연구원에서 실시한 세계 최초로 미디어아트를 기반으로 한 '우주 음원 송출 프로젝트'를 성공적으로 추진했다. 이번 프로젝트는 KAIST와 갤럭시코퍼레이션과 추진 중인‘AI 엔터테크 연구센터’의 일환으로 제안된 것이다. 갤럭시코퍼레이션 소속 아티스트이자 KAIST 기계공학과 초빙교수로 활동 중인 가수 지드래곤(본명 권지용)의 메세지와 음원을 세계 최초로 우주로 송출하는 프로젝트이다. 과학기술, 예술, 대중음악이 결합된 융복합 프로젝트로, KAIST의 첨단 우주 기술과 이진준 교수의 미디어아트 작품, 그리고 지드래곤의 음성과 음원(홈스윗홈, HOME SWEET HOME)이 하나로 연결된 새로운 형태의 ‘우주 문화 콘텐츠’ 실험이다. 이번 협업은 ‘인간 내면의 우주를
2025-04-10우리 대학은 인공지능(AI) 엔터테크 기업 갤럭시코퍼레이션(대표 최용호)과 함께 ‘AI 엔터테크 연구센터’ 설립을 위한 현판식을 KAIST 본원에서 개최한다. 이번 협력은 KAIST가 추진해 온 예술 융합 연구 전략의 일환으로, 과학기술을 기반으로 한 창의적 문화 콘텐츠 개발을 통해 미래형 K-Culture를 주도하려는 노력의 연장선에 있다. KAIST는 단순한 기술 개발을 넘어, 감성 기술과 문화적 상상력의 융합을 통해 콘텐츠 산업의 지평을 넓히는 ‘테크-아트(Tech-Art)’ 융합 모델을 지속적으로 실현해 오고 있다. 앞서 KAIST는 세계적인 소프라노 조수미 초빙석학교수와의 협력으로 ‘조수미 아트&테크 연구센터’를 설립하고, AI 기반의 인터랙티브 공연 기술, 몰입형 콘텐츠 등 예술과 공학의 융합 연구를 선도해왔다. 이번 ‘AI 엔터테크 연구센터’ 설립은 K-콘텐츠 산업의 기술
2025-04-09