본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Electromagnetic+waves
by recently order
by view order
First Instance of Negative Effects from Terahertz-Range Electromagnetic Waves
Professor Philhan Kim Electromagnetic waves (EM-wave) in the terahertz range were widely regarded as the “dream wavelength” due to its perceived neutrality. Its application was also wider than X-rays. However, KAIST scientists have discovered negative effects from terahertz EM-waves. Professor Philhan Kim of KAIST’s Graduate School of Nanoscience and Technology and Dr. Young-wook Jeong of the Korea Atomic Energy Research Institute (KAERI) observed inflammation of animal skin tissue when exposed to terahertz EM-waves. The results were published in the online edition of Optics Express (May 19, 20104). Terahertz waves range from 0.1 to 10 terahertz and have a longer wavelength than visible or infrared light. Commonly used to see through objects like the X-ray, it was believed that the low energy of terahertz waves did not inflict any harm on the human body. Despite being applied for security checks, next-generation wireless communications, and medical imaging technology, little research has been conducted in proving its safety and impact. Conventional research failed to predict the exact impact of terahertz waves on organic tissues as only artificially cultured cells were used. The research team at KAERI developed a high power terahertz EM-wave generator that can be used on live organisms. A high power generator was necessary in applications such as biosensors and required up to 10 times greater power than currently used telecommunications EM-wave. Simultaneously, a KAIST research team developed a high speed, high resolution video-laser microscope that can distinguish cells within the organism. The experiment exposed 30 minutes of terahertz EM-wave on genetically modified mice and found six times the normal number of inflammation cells in the skin tissue after six hours. It was the first instance where negative side effects of terahertz EM-wave were observed. Professor Kim commented that “the research has set a standard for how we can use the terahertz EM-wave safely” and that “we will use this research to analyze and understand the effects of other EM-waves on organisms.”
2014.06.20
View 8794
Professor Chung-Seok Chang named as APS Fellow
Professor Chung-Seok Chang named as APS Fellow - Honorable position offered only to an extremely small number of members within 0.5% of APS - Recognized for his leading and creative contribution to Plasma conveyance theory, Electromagnetic waves heating theory and leadership in the research field of large-scaled computer simulation Professor Chung-Seok Chang (Department of Physics) was named as a fellow of the American Physics Society (APS), world-renowned society in the physics filed. The fellow of the APS is considered as a position of great honor among scholars in the field of Physics since only a small number of regular members within 0.5% of the APS can become the fellows. Professor Chang was recognized for his leading and creative contribution to the fields of Plasma conveyance theory, Electromagnetic waves heating theory and leadership in the research field of large-scaled computer simulation, which made him named as APS fellow. Professor Chang has been invited several times to the Main Policy Committee of the U.S. Department of Energy and was a member of On-site Review Committee on the theoretical research activities of the U.S. major state-run institutes. Due to many world-recognized research results carried out with KAIST students, he has been invited several times for lecture to the conference of the APS as well as large-scaled international academic conferences. As a result, KAIST doctorates of Computational Physics from his laboratory are recognized globally for their excellence in the field of nuclear fusion. Besides, Professor Chang was assigned as the Chief General of the super-sized Computational Theory Research Group last year, to which the U.S Department of Energy will invest 6 million dollars of research fund for three years, and manages the complex theory research group that transcribes and reproduces the properties of nuclear fusion plasma by using large-scaled parallel computers with its head quarter in the U.S. Courant Institute of Mathematical Sciences. This research group consists of greatest U.S. scholars in the fields of Physics, Mathematics, and Computation, belonging to 14 research-education institutes such as Princeton University, Colombia University, MIT, University of California Engineering College, California State University, Rutgers University, New-York University, Courant Institute of Mathematical Sciences, Oak Ridge National Lab, Berkeley National Laboratories, etc., thereby gathering worldwide
2006.10.25
View 12880
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1