Reuters News released a list of the World’s Top 100 Most Innovative Universities on September 15, 2015.
Nine of the top ten universities on the list were American institutions. KAIST took tenth place, the only non-American and Asian university to do so.
Stanford University ranked first, followed by the Massachusetts Institute of Technology (MIT) in second, and Harvard University in third.
The inaugural Reuters Top 100 survey based its rankings on ten criteria: patent volume, patent successes, global patents, patent citations, patent citation impact, percent of patents cited, patent to article citation impact, industry article citation impact, percent of industry collaborative articles, and the total number of science papers.
Japan had nine universities in the survey, more than all countries except for the United States. South Korea has a total of eight universities on the list including Pohang University of Science and Technology, Seoul National University, Yonsei University, and Hanyang University.
For the full details of the survey, see
http://www.reuters.com/article/2015/09/15/idUSL1N11K16Q20150915.
Vision is one of the most crucial human senses, yet over 300 million people worldwide are at risk of vision loss due to various retinal diseases. While recent advancements in retinal disease treatments have successfully slowed disease progression, no effective therapy has been developed to restore already lost vision—until now. KAIST researchers have successfully developed a novel drug to restore vision. < Photo 1. (From left) Ph.D. candidate Museong Kim, Professor Jin Woo Kim, a
2025-03-31In silico analysis of five industrial microorganisms identifies optimal strains and metabolic engineering strategies for producing 235 valuable chemicals Climate change and the depletion of fossil fuels have raised the global need for sustainable chemical production. In response to these environmental challenges, microbial cell factories are gaining attention as eco-friendly platforms for producing chemicals using renewable resources, while metabolic engineering technologies to enhance these
2025-03-27Understanding biomolecular processes - such as protein-protein interactions and enzyme-substrate reactions that occur on the microseconds to millisecond time scale is essential for comprehending life processes and advancing drug development. KAIST researchers have developed a method for freezing and analyzing biochemical reaction dynamics within a span of just a few milliseconds, marking a significant step forward in better understanding complex biological reactions. < Photo. (From left)
2025-03-24Poly(ester amide) amide is a next-generation material that combines the advantages of PET (polyester) and nylon (polyamide), two widely used plastics. However, it could only be produced from fossil fuels, which posed environmental concerns. Using microorganisms, KAIST researchers have successfully developed a new bio-based plastic to replace conventional plastic. KAIST (represented by President Kwang Hyung Lee) announced on the 20th of March that a research team led by Distinguished Professor
2025-03-24When light interacts with metallic nanostructures, it instantaneously generates plasmonic hot carriers, which serve as key intermediates for converting optical energy into high-value energy sources such as electricity and chemical energy. Among these, hot holes play a crucial role in enhancing photoelectrochemical reactions. However, they thermally dissipate within picoseconds (trillionths of a second), making practical applications challenging. Now, a Korean research team has successfully devel
2025-03-17