For the first time, the university has broken into the ranks of top 50 global universities since the first release of the rankings in 2004. The 2015 QS World University Rankings were released on September 15, 2015. Overall, KAIST ranked 43rd, advancing eight steps up from last year’s results. Its engineering and technology rank now places it 13th in the global rankings, but it is first in Korea's rankings. Both represent the highest record KAIST has ever attained since the QS Rankings began in 2004. The QS Rankings uses six performance indicators to assess universities’ global reputation, research impact, staffing levels, and international complexion. The indicators are: academic reputation (40%), employer reputation (10%), student-to-faculty ratio (20%), number of citations per faculty publications (20%), international to domestic faculty ratio (5%), and international to domestic student ratio (5%). The Massachusetts Institute of Technology (MIT) topped the 2015 list, with Harvard University coming in second place. The University of Cambridge and Stanford University jointly ranked third. For details on the 2015 QS World University Rankings, see http://www.topuniversities.com/university-rankings-articles/world-university-rankings/qs-world-university-rankings-201516-out-now.
Vision is one of the most crucial human senses, yet over 300 million people worldwide are at risk of vision loss due to various retinal diseases. While recent advancements in retinal disease treatments have successfully slowed disease progression, no effective therapy has been developed to restore already lost vision—until now. KAIST researchers have successfully developed a novel drug to restore vision. < Photo 1. (From left) Ph.D. candidate Museong Kim, Professor Jin Woo Kim, a
2025-03-31In silico analysis of five industrial microorganisms identifies optimal strains and metabolic engineering strategies for producing 235 valuable chemicals Climate change and the depletion of fossil fuels have raised the global need for sustainable chemical production. In response to these environmental challenges, microbial cell factories are gaining attention as eco-friendly platforms for producing chemicals using renewable resources, while metabolic engineering technologies to enhance these
2025-03-27Understanding biomolecular processes - such as protein-protein interactions and enzyme-substrate reactions that occur on the microseconds to millisecond time scale is essential for comprehending life processes and advancing drug development. KAIST researchers have developed a method for freezing and analyzing biochemical reaction dynamics within a span of just a few milliseconds, marking a significant step forward in better understanding complex biological reactions. < Photo. (From left)
2025-03-24Poly(ester amide) amide is a next-generation material that combines the advantages of PET (polyester) and nylon (polyamide), two widely used plastics. However, it could only be produced from fossil fuels, which posed environmental concerns. Using microorganisms, KAIST researchers have successfully developed a new bio-based plastic to replace conventional plastic. KAIST (represented by President Kwang Hyung Lee) announced on the 20th of March that a research team led by Distinguished Professor
2025-03-24When light interacts with metallic nanostructures, it instantaneously generates plasmonic hot carriers, which serve as key intermediates for converting optical energy into high-value energy sources such as electricity and chemical energy. Among these, hot holes play a crucial role in enhancing photoelectrochemical reactions. However, they thermally dissipate within picoseconds (trillionths of a second), making practical applications challenging. Now, a Korean research team has successfully devel
2025-03-17