본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
NI
by recently order
by view order
KAIST to build large-scale civil engineering experiment center
- Geo-Centrifuge experiment center of an area of about 1,712 square meters and an estimated construction cost of total 8.4 billion won - Simulation laboratory in the field of geotechnical engineering with state-of-the-art experiment equipment- Ground-breaking ceremony held on April 3 at 4 pm KAIST will construct ‘distributed shared-type Geo-Centrifuge experiment center’, a large-scale civil engineering laboratory that will study natural disasters such as earthquake, embankment collapse, etc. with ground structure miniatures. A two-story building with a basement occupying an area of about 1,712 square meters will become a landmark laboratory in the field of geotechnical engineering that can be used for the education, research, and social infrastructure design by universities, institutes, and corporations via high-speed information and communication network. The estimated construction cost is 8.4 billion won. The center will be composed of experiment building including geo-centrifuge laboratory, model-making room, workshop, geotechnical engineering laboratory, and specimen storehouse; and research building including control room, video conference room, electronic library, and research rooms. A variety of convenience facilities for researchers and video conference and remote monitoring system, with which researcher at remote distances can directly participate in experiments, will be provided in the research building, and world’s top-class experiment equipment such as geo-centrifuge with a turning radius of 5 meters, a maximum acceleration of 130 G (130 times faster than the acceleration of gravity), a preload of 2,400 kg and bidirectional shaking-table that can reproduce earthquakes-like wave during experiments, and robots that can reproduce construction procedures by a remote control will be installed. Geo-Centrifuge experiment refers to an experiment that reproduces natural disaster-like motions by making miniatures of large-scale ground structures such as dams, slopes, etc. and using centrifugal forces generated from high-speed rotation. This experiment can easily and rapidly reproduce actual motions of ground structures at a low cost, thereby being widely used for various geotechnical engineering researches such as evaluation of seismic safety, movement of soft ground, slope stability analysis, etc. The causes of the embankment collapse in New Orleans by Hurricane Katrina in 2005 were also revealed by simulation tests by this experiment. “The center will make possible a variety of experiments and researches that have never been available in Korea due to the lack of experiment infrastructure, therefore activate researches over the design and construction of large-scale social infrastructures. Making possible civil engineering researches demanding the use of large-scale equipment like Centrifuge, severely dependent on overseas technologies so far, will enhance the global competitiveness of Korean construction industry,” said Dong-soo Kim, President of the center. The center will be constructed as part of the Ministry of Construction & Transportation (MOCT)’s project for the establishment of distributed shared-style construction research infrastructure, which is designed to establish construction research infrastructures in a national level. The ground breaking ceremony was held at KAIST on April 3 at 4 pm.
2007.04.12
View 14157
KAIST-Oracle Korea agrees on industry-academy cooperation
- To establish ERP systems throughout the entire fields of KAIST to provide advanced education and research services - To perform Joint R&D in the field of ubiquitous- Agreement signed at KAIST on April 5 KAIST (President Nam-Pyo Suh) and Oracle Korea (President Sam-Soo Pyo) signed an agreement on the industry-academy cooperation program for the establishment and joint researches of advanced education services system on April 5 at 11 am. KAIST and Oracle Korea will establish an Enterprise Resource Planning (ERP) system ‘ORACLE People Soft (PSFT) Campus Solution’ at KAIST. ‘PSFT Campus Solution’ refers to a university-oriented ERP system dominating world market share and will be introduced to KAIST for the first time among Korean universities. The establishment of ERP system and next-generation web services throughout KAIST will enhance KAIST’s management abilities over education and research, thereby making possible the offering of advanced education services. The both also agreed to promote joint researches in the field of ubiquitous. Major cooperation items are ▲ the establishment and operation of ERP systems, ▲ the creation of advanced education services model for universities in Korea and East Asia and the setting-up of foundation for standard information services, ▲ the exploration of and participation in joint concerns, ▲ the establishment of joint information association for the exchanges of science and technology information, ▲ joint researches and development projects by the both parties, and ▲ education and training for the advancement of education institutes. “The cooperation with world-class IT corporate Oracle can produce significant fruits of human power fostering and technology development in advanced fields,” KAIST President Nam-Pyo Suh said. “The industry-academy cooperation by Oracle having a variety of world’s top IT technologies and KAIST will be a stepping stone for the advancement of domestic education institutes. I’ll devote myself to developing the models of state-of-the-art universities in the 21st century via close mutual cooperation,” said Sam-Soo Pyo, President of Oracle Korea.
2007.04.12
View 15112
Dual Degree Programs with TU Berlin
Dual Degree Programs with TU Berlin- Five students to be exchanged each year from this year, receive degrees from both schools- Final stage of negotiation with GIT, UCSB- On-going DDP negotiations with Delft University of Technology in Netherlands, Royal Institute of Technology in Sweden, Technical University of Denmark, Norwegian University of Science and Technology, Tsinghua University in China, Tokyo Institute of Technology- DDPs with Ecole Polytechnique, INSA Lyon of France, and University of Karlsruhe of Germany underway at department levels KAIST (President Nam-Pyo Suh) will begin Dual Degree Programs (DDP) with Technical University of Berlin (TU Berlin). The both recently reached an accord on the implementation of DDP and will exchange maximum five students each year, starting this year. The DDP allows each school involved to exchange students who meet the counterpart’s requirements one-by-one with prior consensus of departments to accept the students and to confer its own diplomas on students who complete the prescribed graduation requirements. TU Berlin, established in 1770, currently holds 28,344 enrolled students, among which 5,829 students are from abroad (over 20%) and provides lectures for more than 50 subjects in the fields of Humanities, Social Sciences, Economics and so on with its emphases on Natural Science and Engineering. TU Berlin has fostered a multitude of distinguished scientists, including 1986 Nobel Prize Recipient in Physics Ernst Ruska who developed an electronic microscope for the first time in the world. KAIST has now been eagerly promoting the DDPs with many distinguished foreign universities. It is on the final stage of the DDP negotiation with Georgia Institute of Technology (GIT) and University of California Santa Barbara (UCSB), and has already agreed with Tsinghua University in China to implement the DDPs in several advanced fields. Also, an agreement with Tokyo Institute of Technology (TIT) is soon to be made. With Ecole Polytechnique and INSA Lyon of France, and University of Karlsruhe of Germany, the negotiation is underway at department levels, and the DDPs are also being promoted with Milan Technical University of Italy, Delft University of Technology of Netherlands, Royal Institute of Technology (KTH) of Sweden, Technical University of Denmark (DTU), Norwegian University of Science and Technology (NUNT). “As global interests in East Asia arise, interests in KAIST by many foreign universities also increase. We are planning to expand the scope of this program to provide KAIST students with more opportunities of studying abroad and to attract more outstanding foreign students,” KAIST Dean of Academic Affairs Kwang-Hyung Lee explained. - Dual Degree Program (DDP)In DDP, schools involved can maintain their own curriculums and confer their own degrees on students who complete the graduation requirements. Therefore, students can receive degrees from both schools involved. Meanwhile, DDP is not the same concept with Joint Degree Program (JDP), in which schools involved establish a joint curriculum and confer a single joint degree on students.
2007.03.19
View 17992
Best Academic Award to Prof. Huen Lee
Professor Huen Lee, Department of Chemical and Biomolecular Engineering, received the Best Prize of KAIST Academic Awards at the 36th anniversary ceremony of KAIST. Professor Lee has published 43 international papers and 12 domestic papers for the past five years and achieved world’s distinguished academic performances such as the development of hydrogen storage technologies, the discovery of the principle on carbon dioxide-methane hydrate swapping, etc. Professor Lee published his paper on methane hydrate at Science in 2003, and Nature introduced his paper on hydrate storage technologies as ‘highlight research’ in 2005, commenting his research as a landmark performance to pave ways for the development of future hydrogen energy. His discovery on ‘the principle of carbon dioxide-methane hydrate swapping’, published by PNAS in 2006, also gained huge attraction across the world as one of the promising technologies that can solve energy problem and global warming crisis simultaneously. Meanwhile, the rest of the awardees of 2007 are as follows: - Academic Award: Professor Jongkyeong Chung, Dep. of Biological SciencesAssociate professor Changok Lee, Dep. of MathematicsAssociate professor Sangkyu Kim, Dep. of ChemistryProfessor Dae-gab Gweon, Dep. of Mechanical Engineering - Creative Lecture Award: Associate professor Jaehung Han, Dep. of Aerospace Engineering - Excellent Lecture Award: Assistant profess Bong Gwan Jun, School of Humanities & Social Science Professor Joonho Choe, Dep. of Biological Sciences Professor Changwon Kang, Dep. of Biological Sciences Professor Seunghyup Yoo, Div. of Electrical Engineering Associate professor Otfried Cheong, Div. of Computer Science Professor Hoe Kyung Lee, Graduate School of Finance - Contribution Award: Professor Sung Chul Shin, Dep. of Physics Professor Bowon Kim, Graduate School of Culture Technology Professor Jisoo Kim, Graduate School of Finance - International Cooperation Best Award: Professor Hyung Suck Cho, Dep. of Mechanical Engineering - International Cooperation Award: Professor Kunpyo Lee, Dep. of Industrial Design Professor Soon Hyung Hong, Dep. of Materials Science & Engineering Professor Sungjoo Park, Graduate School of Culture Technology
2007.03.19
View 17366
Professor Seong-Ihl Woo Develops New High-Speed Research Method
Professor Seong-Ihl Woo Develops New High-Speed Research Method Reduce research periods and expenses for thin film materials several ten times Posted on the online version of Proceedings of National Academy of Sciences of the United States of America (PNAS) on January 9 A team led by Seong-Ihl Woo, a professor of KAIST Department of Chemical & Biomolecular Engineering and the director of the Center for Ultramicrochemical Process Systems, has developed a high-speed research method that can maximize research performances and posted the relevant contents on the online version of Proceedings of National Academy of Sciences of the United States of America (PNAS), a distinguished scientific journal, on January 9, 2007. Professor Woo’s team has developed a high-speed research method that can fabricate several tens or several thousands of thin films with different compositions (mixing ratio) at the same time and carry out structural analysis and performance evaluation more than ten times faster and accurately, which leads to the shortening of the research processes of thin film materials. This is an epoch-making method that can reduce research periods and expenses several ten times or more, compared to the previous methods. The qualities of final products of electronic materials, displays, and semi-conductors depend on the features of thin film materials. Averagely, it takes about two weeks or longer to fabricate a functional thin film and analyze and evaluate its performances. In order to fabricate thin film materials in need successfully, more than several thousand times of tests are required. The existing thin film-fabricating equipment is expensive one demanding high-degree vacuum, such as chemical vapor deposition, sputtering, physical vapor deposition, laser evaporation, and so on. In order to fabricate thin films of various compositions with this equipment, a several million won-worth target (solid-state raw material) and precursors (volatile organic metal compound) pricing several hundreds won per gram are required. Therefore, huge amount of experiment expense is demanded for fabrication of several ten thousands of thin films with various compositions. Professor Woo’s team has developed ‘combinatorial droplet chemical deposition’ equipment, which does not demand high-degree vacuum and is automated by computers and robots, by using a new high-speed research measure. The equipment is priced at about 1/5 of the existing equipment and easy for maintenance. This equipment uses cheap reagents, instead of expensive raw materials. Reagents necessary to form required compositions are dissolved in water or proper solvents, and then applied by high frequencies to make several micrometer-scaled droplets (fine liquid droplet). Theses droplets are moved by nitrogen and dropped onto a substrate, which is to be fabricated into a thin film, and then subsequent thermal treatment is applied to the substrate to fabricate a thin film of required composition. At this moment, several tens or several hundreds of thin films with various compositions can be fabricated at the same time by reducing the size of thin film specimens into millimeter scale with the use of shade mask and adjusting vaporization time with masks, the moving speed of which can be adjusted. The expenses for materials necessary for the fabrication of thin films with this equipment amount to several ten thousands won per 100 grams, which is in the range of 1/100 and 1/10 of the previous methods, and the research period can be shortened into one of several tenth. “If this new method is applied to the development of elements in the fields of core energy, material and health, which have not been discovered by the existing research methods so far, as well as researches in thin film material field, substantial effects will be brought,” said Professor Woo. ‘Combinatorial droplet chemical vaporization’ equipment is pending a domestic patent application and international patent applications at Japan and Germany. This equipment will be produced by order and provided to general researchers.
2007.02.02
View 15723
Professor Sang-Yup Lee Senior Editor of U.S. Biotechnology Journal
Professor Sang-Yup Lee Named Senior Editor of U.S. Biotechnology Journal Will supervise paper examination in the fields of system biology, system bioengineering and metabolic engineering, and set editing direction Professor Sang-Yup Lee, LG Chemical’s Chair-Professor and the leader of BK project group of KAIST Chemical and Biomolecular Engineering Department, was named senior editor of Biotechnology Journal published by the U.S. Wiley-VCH. Professor Lee will supervise paper examination in the fields of system biology, system bioengineering and metabolic engineering, and set and manage the editing direction of the journal. ‘Biotechnology Journal’ was first published in January 2006 to exchange rapidly-exchanging knowledge and information in life science and its relevant fields by Wiley, a world-famous science journal publisher with the history of 208 years (founded in 1799). Particularly, ‘Biotechnology Journal’ is a new-typed scientific journal treating various fields such as life science research-relevant ethics and cultures necessary for general people as well as expertise research information of life science. “Although taking charge of editing of many scientific journals spends much time, it’s very fruitful that I’ll lead the direction of research papers of many world-famous scientific journals and I can make efforts to prevent outstanding papers by Korean scientists from being disadvantaged,” said Professor Lee. “More Korean scholars are taking charge of editing jobs of world-famous scientific journals. It’s a good indication that the capacities of Korean science and engineering have been enhanced significantly as much,” a staff of KAIST PR team said. Meanwhile, Professor Lee, distinguished by outstanding research performances in the fields of metabolic engineering and system life engineering, is now ▲associate editor of Biotechnology and Bioengineering, top scientific journal of biotech engineering published by the U.S. Wiley ▲editor of Applied Microbiology and Biotechnology published by German Springer ▲ associate editor of Bioprocess and Biosystems Engineering by German Springer, and editing member of ▲ Journal of Bioinformatics and Computational Biology by Singapore’s World Scientific ▲ Asia Pacific Biotech News ▲ Biochemical Engineering Journal, Metabolic Engineering, and Microbial Cell Factory by Elsevier.
2007.02.02
View 14067
Singer Janghoon Kim Donates Development Fund to KAIST
Singer Janghoon Kim Donates Development Fund to KAIST - Generously donates part of earnings from his concert where HUBO performed for development of science - Opportunity for activation of science culture through encounter between science and culture Singer Janghoon Kim donated 50 million won from his concert earnings for KAIST development fund. Singer Kim visited KAIST on January 16 (Tue) and donated the development fund at the joint lecture room in KAIST Mechanical Engineering B/D. Singer Kim had a concert at the end of the last year where he performed with ‘HUBO’ and ‘Albert HUBO’, human-like robots of KAIST HUBO center. Singer Kim made a donation to express his gratitude to KAIST Professor Joonho Oh and his research team, who assisted his concert actively to allow HUBO to join the concert in spite of technical difficulties and research obstacles. “Although HUBO has performed various activities so far, it is the first time to make a successful performance with a singer on a stage. Honestly, I hesitated a lot to allow HUBO to join Kim’s concert due to safety problems etc., but I was so impressed by Kim’s interest and passion for science, and thus decided HUBO’s joining the concert. This is the first case how robots can exchange with public cultures. I wish this case will be a momentum to activate science culture and make people feel closer to science,” Professor Oh said. The donation will be spent partly as KAIST development fund (20 million won) and partly on the publicity of science and technology via HUBO (30 million won).
2007.01.23
View 12949
KAIST Alumni Awards of the Year 2006
KAIST Alumni Awards of the Year 2006 Byung-Kyu Chang, Jin-Gon Kim, Sin-Bae Kim, and Sang-Ki Rhee (From left) KAIST Alumni Association (Chairman Sam-Soo Pyo, CEO of Oracle Korea) named the recipients of ‘KAIST Alumni Awards of the year 2006’ and conferred the awards at its New Year’s Greetings, which was held at Grand Ballroom in JW Marriott Hotel, Saturday, January 13. KAIST Alumni Awards of the Year were conferred on ▲ Byung-Kyu Chang, CEO of Cheot-noon Inc., at the young alumni section, ▲ Jin-Gon Kim, Professor of POSTECH, at the academy section, ▲ Sin-Bae Kim, CEO of SK Telecom, at the industry section, and ▲ Sang-Ki Rhee, President of Korea Research Institute of Bioscience & Biotechnology (KRIBB), at the society section. The young alumni section winner Byung-Kyu Chang, Master of KAIST Computer Sciences (Class ‘97), has jointly created Neowiz, Korea’s typical internet venture company, and created Cheot-noon Inc., internet-searching company, to substantially contribute to the development of Korea’s IT industries. The academy section winner Jin-Gon Kim, Master of KAIST Chemical Engineering (Class ‘82), has made great research achievements in nano field, such as the development of high molecular tube theory, etc. The industry section winner Sin-Bae Kim, Master of KAIST Industrial Engineering (Class ‘80), has contributed to the development of mobile communication and information system industries with his outstanding technology management capabilities and shown excellent models to junior engineers with his creative managing philosophies. The society section winner Sang-Ki Rhee, Ph.D of KAIST Chemical & Biomolecular Engineering (Class ‘80), has contributed to the development of practicalization technologies in genetic engineering field and the government’s establishment of biotechnology policies, and created large-scaled research performances through management renovation during his reign as the president of KRIBB. ‘KAIST Alumni Award of the Year’, the greatest honor of KAIST alumni, was established in 1992 to encourage alumni’s activities by yearly awarding alumni who contribute to the development of the nation and the society and raise the fame of alma mater.
2007.01.22
View 13610
Professor Jongwon Lee wins Korean Engineering Award
Professor Jongwon Lee wins Korean Engineering Award Professor Jongwon Lee of the department of Mechanical Engineering won the 7th Korean Engineering Award conferred by the Ministry of Science and Technology and Korean Science and Engineering Foundation. Professor Lee is a world-famous scholar in the field of ‘dynamics and vibration of rotors’ and his work in 1993, ‘Vibration Analysis of Rotors’, is highly recognized as a creative and practical research on the dynamics of rotors. The Korean Engineering Award is conferred on domestic scientists who have made world-level research achievements in the engineering field by the Ministry of Science and Technology and Korean Science and Technology Foundation every two years.
2007.01.11
View 12201
KAIST and Hynix Semiconductor Jointly Foster Manpower
KAIST and Hynix Semiconductor Jointly Foster Manpower - Joint running of industry-academy programs for excellent semiconductor manpower training - Regular mutual manpower exchange for on-site education and research KAIST Department of Raw Material Science and Engineering and Hynix Semiconductor concluded an agreement to manage a ‘joint industry-academy business group’, Wednesday, December 6. The both bodies reached an agreement to jointly promote the first step of ‘the excellent semiconductor manpower training program’ for 4 years beginning 2007. KAIST plans to foster creative and excellent semiconductor manpower possessing both of theories and technologies through research topics and lectures that reflect Hynix Semiconductor’s necessities, and will promote regular manpower exchanges with Hynix Semiconductor to enhance trainees’ on-site adaptabilities. Hynix Semiconductor will actively participate in the researches and support the expenses for research and education and high-cost equipment. Furthermore, Hynix Semiconductors will dispatch its researchers to KAIST as adjunct professors to educate doctorate students, who join the researches, and assist on-site education.
2006.12.11
View 12998
KAIST hosts Korea-China High-tech Expo
KAIST hosts Korea-China High-tech Expo - Three days from Tuesday, December 12 at Beijing International Convention Center in China - 30 Korean companies and 40 Chinese companies will participate and exhibit cutting-edge technologies KAIST (President Nam-Pyo Suh) will host ‘Korea-China High-Tech EXPO 2006’ with Chinese Association for Science and Technology (CAST) at Beijing International Convention Center in China for three days from Tuesday, December 12. ‘Korea-China High-Tech EXPO’ is an event which has taken place annually since the conclusion of the Memorandum Of Understanding (MOU) for the enhancement of international joint researches and mutual exchanges between KAIST and Tsinghua University in the year of 2002 and faces the 4th time this year. The event began for the activation of technical exchanges between top venture enterprises of the both countries and the enhancement of academic exchanges between top technical universities of the both countries and now has grown into a business stage for the enhancement of competitiveness of venture enterprises and the creation of new markets. In the event, 30 companies, including Golfzon Co,. Ltd. etc., and 4 institutes, including KAIST Human-Friendly Welfare Robot System Engineering Research Center, etc., from Korea and 40 companies from China will participate and exhibit their cutting-edge technologies. The participants have been selected with the focus on technologies requested by China-side, and each participant will be provided with opportunities of detailed consultation with buyers from ten companies of China. During the event, subsidiary events like excellent technology exhibition, Korea-China technical business forum, special introductions of goods by Mosin Biotech, Inc. and Daeduk Lab Inc., etc. will take place.
2006.12.11
View 14029
Final competition of 'UFC' contest
Final competition of ‘UFC’ contest Joint university team D-M2 won first prize The final winner of ‘the 2nd Ubiquitous Fashionable Computer (UFC) contest‘, co-hosted by KAIST and the Korean Society for Next-Generation Computing (KSNGC), was determined. At the final competition of November 17 among 9 qualified teams, the first prize went to D-M2, composed of students from Seokyeong University, Kookmin University, Hongik University, and Sungshin Women’s University. D-M2 manufactured a work utilizing a user’s motion information by applying motion capture technologies to UFC. Particularly, the work gained a high score at the item of the functional perfection by controlling the robot according to a user’s motion. The gold prize went to the smart jacket by Jjik-eo-cha-ki (Kwangwoon University and Duksung Women’s University). The smart jacket is embedded with an intelligent clothes function in terms of checking a user’s status in a real-time basis and delivering it to a doctor, etc. The silver and bronze prizes went to Samsung Software Membership (SSM) and Hanse University, respectively. SSM manufactured a training suit with sensors for grasping the movement of each articulation of a user built-in, and Hanse University developed a system enabling blinders to get a voice service of general documents or books regardless of time and place. The participants composed of university students or graduate students have passed the severe qualifying contest through the examination of written plan and presentation of last April and manufactured creative works that realize the fusion of IT technologies and fashion. At the contest, that fact that all winners of the first, gold, and silver prizes were the members of SSM gained more attention. UFC is a new field that pursuits the enhancement of computer technologies and the creation of fashion simultaneously by fusing IT technologies and fashions. UFC is a one-step advanced field of the existing wearable computer and an important cutting-edge field that leads a computer industry in the era of ubiquitous. “The level of the works exhibited was higher than I’d expected and the cooperation between the departments of Closing Textile and Electronics appeared to be so positive, which made me expect more brilliant future of the next-generation computing industry,” said Hoijoon You, Co-chairman of the contest and professor of the department of Electrical Engineering.
2006.11.27
View 15323
<<
첫번째페이지
<
이전 페이지
61
62
63
64
65
66
67
68
69
70
>
다음 페이지
>>
마지막 페이지 73