본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
IT
by recently order
by view order
"The 2010 Artificial Intelligence Robot War Competition" begins to receive applications
[Event Notice] “The 2010 Artificial Intelligence Robot War Competition” begins to receive applications A good opportunity to gauge the intelligence of your robots “The 2010 Artificial Intelligence (AI) Robot War Competition” will be held in October 2010, and the Competition has been receiving applications from contestants since April 1st. The deadline for the application will be May 31st, 2010. Qualified contestants must be a minimum of two, but less than six, team members, and they will compete in one of the two fields: System on Chip (SoC) Taekwon Robot and Humanoid Robot (HURO). Winners will be decided based on the intelligence capabilities presented by a robot’s platform that mimics key functions of the human brain. SoC Taekwon Robot will compete against one another by using a camera installed on its head to recognize visual images, locations, distances, and gestures of the other competing robot. HURO competition is a new entry begun this year, and winners will be determined in accordance with the robot’s ability to perform given missions and fights. Missions are to go through a track installed with obstacles, recognize colors and shapes of barriers, and knock down barriers to earn scores. Fighting will be performed in the form of a Korean martial art, Tae-kwon-do. The Korean government has nominated Robotics as one of the key growth engines to develop IT industry and Korean economy. Robotics converge many of different engineering fields, such as machinery, materials, components, and embedded software. In particular, the SoC is an essential technology for Korea to continuously take lead in the semi-conductor industry in the world, which is an important element for robotics. SoC stands for System on Chip, an integrated chip that assembles various chips and components to be fabricated together on a single chip, instead of building them on a circuit board. The SoC technology has advantages of higher performance, smaller space requirements, lower memory requirements, higher system reliability, and lower consumer costs. An artificial intelligence SoC robot is autonomous because it can adapt itself to changes in various environments and reach a given goal without constantly receiving external orders. For details of the event, please refer to the website of www.socrobotwar.org.
2010.04.06
View 13271
Interesting research results were published on the use of Twitter.
The number of “followers” on your Twitter account does not necessarily mean that “Your opinions matter much” to other people. A KAIST graduate researcher, Mi-Young Cha, joined an interesting project that studies the influence of a popular social media, Twitter. Most of Twitter users today consider the number of followers as a measurement of their influence on the social sphere. According to the research paper, however, this connection does not seem to standing together. For details, please click the link below for an article published by the New York Times. Dr. Cha received all of her post secondary education degrees in Computer Science, including her Ph.D. in 2008, from KAIST. Since 2008 till now, she has been a post doctoral researcher at Max Planck Institute for Software Systems (MPI-SWS) based in Germany. [New York Times Article, March 19, 2010] http://www.nytimes.com/external/readwriteweb/2010/03/19/19readwriteweb-the-million-follower-fallacy-audience-size-d-3203.html
2010.04.05
View 13756
New Text Book on Chemistry Published by KAIST Professor and Student
A chemistry textbook written in English and Korean will aid Korean students to learn General Chemistry in a global academic setting. Korean students majoring in chemistry and looking for an opportunity to study abroad will have a new, handy textbook that presents them with a practical introduction to an English speaking lecture on general chemistry. Aiming for advanced Korean high school and college/university students, the inter-language textbook is written by two incumbent professors teaching chemistry at a university in Korea and the US. The book will help Korean students prepare for a classroom where various topics of general chemistry are presented and discussed in English. Clear, collated sections of English and Korean text provide the student with sufficient explanation of the rudimentary topics and concepts. Composed of 15 chapters on the core subjects of General Chemistry, i.e., Stoichiometry and Chemical Reactions, Thermochemistry, Atomic Structure, and Bonding, the textbook includes essential English vocabulary and usage sections for each chapter; it also contains a pre-reading study guide on the subject that prepares the student for listening to a lecture. This section includes view-graph type slides, audio files, and follow-up questions the student can use to prepare for an English-speaking course. The various accompanying audio files are prepared to expose the student to English scientific dialogue and serve as examples for instruction at Korean secondary and tertiary schools. The book was coauthored by Korean and American scientists: A father and son, who have taught chemistry at an American and Korean university, wrote the book. Professor Melvyn R. Churchill at the State University of New York at Buffalo and Professor David G. Churchill at KAIST prepared all of the technical English text which was adapted from General Chemistry course lecture notes; the text was further shaped by original perspectives arising from many student interactions and questions. This English text was translated into Korean by Professor Kwanhee Lee from the Department of Life and Food Science at Handong Global University, who coauthored a previous preparatory book for Korean students in a different subject. He also supplied an important introductory section which serves as a general guide to the classroom student. Kibong Kim, a doctoral student in the Department of Chemistry at KAIST, helped in preparing the book as well. “This has been definitely a collaborative undertaking with an international academic crew and it underscores that the Korean internationalization in science is mainstream. Professors and a Korean student created a new book for Korean consumption and benefit,” Professor David G. Churchill says. ---------------------------------------------------------------------------------------- Bibliography: “How to Prepare for General Chemistry Taught in English” by David George Churchill, Melvyn Rowen Churchill, Kwanhee Lee & Kibong Kim, Darakwon Publishing, Paju, Republic of Korea, 2010, 400 pp, ISBN 978-89-5995-730-9 (1 Audio CD included)
2010.04.02
View 14988
Prime Minister Lars Løkke Rasmussen of the Kingdom of Denmark visited KAIST on March 11, 2010.
Prime Minister Lars Løkke Rasmussen of the Kingdom of Denmark visited KAIST on March 11, 2010. HUBO, a humanoid robotdeveloped by KAIST, gave a warm welcome to the prime minister and his delegation. Prime Minister Lars Løkke Rasmussen of Denmark visited Moon-Ji Campus of KAIST on March 11, 2010 and had a chance to meet a humanoid robot, HUBO. Since the first appearance in 2005, HUBO has been continuously developed by KAIST for further refinements. HUBO welcomed the prime minister and offered him a flower bouquet. They also shook hands and exchanged small talks in Danish, which made the delegation pleasantly surprised. The Danish delegation had a ride on Online Electric Vehicle (OLEV) and showed a great interest in the technology applied therein. The prime minister said, “Denmark has a keen interest in green technology, and I was very impressed by OLEV. It is just amazing to see how fast KAIST has developed as an outstanding research university in the world during a short period of time.” President Lee Myung-bak invited the Danish prime minister to discuss current international developments, including issues involving the Korean Peninsula, and ways to enhance bilateral cooperation in such areas as trade, investment, renewable energy and green growth.
2010.03.17
View 13267
Photonic crystals allow the fabrication of miniaturized spectrometers
By Courtesy of Nanowerk Photonic crystals allow the fabrication of miniaturized spectrometers (Nanowerk Spotlight) Spectrometers are used in materials analysis by measuring the absorption of light by a surface or chemical substance. These instruments measure properties of light over a specific portion of the electromagnetic spectrum. In conventional spectrometers, a diffraction grating splits the light source into several beams with different propagation directions according to the wavelength of the light. Thus, to achieve sufficient spatial separation for intensity measurements at a small slit, a long light path – i.e., a large instrument – is required. However, for lab-on-a-chip or microTAS (total analysis system) applications, the spectrometer must be integrated into a sub-centimeter scale device to produce a stand-alone platform. To achieve this, researchers at the Korea Advanced Institute of Science and Technology (KAIST) propose a new paradigm in which the spectrometer is based on an array of photonic crystals with different bandgaps. "Because photonic crystals refelct light of different wavelengths selectively depending on their bandgaps, we can generate reflected light spanning the entire wavelength range for analysis at different spatial positions using patterned photonic crystals," Seung-Man Yang, Director of the National Creative Research Initiative Center for Intergrated Optofluidic Systems and Professor of the Department of Chemical & Biomolecular Engineering at KAIST, tells Nanowerk. "Therefore, when the light source impinges on the patterned photonic crytals, we can construct the spectrum using the reflection intensity profile from the constituent photonic crystals." Photonic crystals – also known as photonic band gap material – are similar to semiconductors, only that the electrons are replaced by photons (i.e. light). By creating periodic structures out of materials with contrast in their dielectric constants, it becomes possible to guide the flow of light through the photonic crystals in a way similar to how electrons are directed through doped regions of semiconductors. The photonic band gap (that forbids propagation of a certain frequency range of light) gives rise to distinct optical phenomena and enables one to control light with amazing facility and produce effects that are impossible with conventional optics. To demonstrate this new concept based on patterned photonic crystals, Yang and his group used non-close-packed colloidal crystals of silica particles dispersed in photocurable resin. Due to the repulsive interparticle potential, monodisperse silica particles spontaneously crystallize into non-close-packed face-centered cubic (fcc) structures at volume fractions above 0.1. Therefore, the particle volume fraction determines both the lattice constant and the bandgap position. a) Optical image of an ETPTA film containing porous photonic crystal stripe patterns with 20 different bandgaps. b) Reflectance spectra from the 20 strips. c) Optical microscope image of the middle region with the parallel stripe pattern (denoted as white-dotted box in a). d) Cross-sectional SEM images of first, sixth, eleventh and seventeenth strips. The scale bars in a, c and d are 1 cm, 2mm and 2 µm, respectively. (reprinted with permission from Wiley-VCH Verlag) Reporting their findings in a recent issue of Advanced Materials ("Integration of Colloidal Photonic Crystals toward Miniaturized Spectrometers"), the KAIST team has demonstrated the integration of colloidal photonic crystals with 20 different bandgaps into freestanding films (prepared by soft lithography), and their application as a spectrometer. Yang explains that the team was able to precisely control the photonic bandgap by varying the particle size and volume fration. "The prepared colloidal composite structures showed high physical rigidity and chemical resistivity" he says. "The composite structure is suitable for spectroscopic use due to the small full widths at half maximum (FWHMs) of the reflectance spectra, which mean that there is little overlap of the reflectance spectra of neighboring photonic crystal strips." "On the other hand" says Yang, "porous photonic crystals showed large FWHMs and high reflectivities, which should prove useful in many practical photonic applications that require high optical performance and physical rigidity as well as simple and inexpensive preparation." In addition to fabricating miniaturized spectrometers, which can for instance be integrated into small lab-on-a-chip devices, these integrated photonic crystals can be potentially used for tunable band reflection mirrors, optical switches, and tunable lasing cavities. Moreover, patterned photonic crystals with RGB colors are well-suited for use in reflection-mode microdisplay devices. Yang points out that, although the spectrometric resolution can be reduced by employing the smaller bandgap interval and photonic bandwidth, there is a limitation. "Now, we are studying photonic crystals with continuous modulation of bandgap position. We expect that the photonic crystals can reduce the resolution to 0.01 nm." By Michael Berger. Copyright 2010 Nanowerk
2010.03.17
View 14348
Future of Electric Automobile Glimpsed from KAIST
Etnews.co.kr. printed an interview with Professor Edward A. Lee, from the Department of Electrical Engineering and Computer Sciences, University of California in Berkeley, who visited KAIST to attend the 2010 International Workshop on Information Technology (IT) Convergence. During the workshop, Professor Lee had a chance to ride KAIST’s Online Electric Vehicle (OLEV), and etnews.co.kr. asked him about his impressions. Article published on Friday, February 19, 2010 (For the Korean article, please click the link at http://www.etnews.co.kr/news/detail.html?id=201002190158) The below is a translation from the Korean text. ----------------------------------------- Reported by Hee-Bum Park (hbpark@etnews.co.kr) "Future of Electric Automobile Glimpsed from KAIST"s Online Electric Vehicle Project," said Professor Lee. Distinguished Professor Edward A. Lee, from the Department of Electrical Engineering and Computer Sciences, University of California in Berkeley, expressed his impressions after a ride on KAIST’s Online Electric Vehicle. “KAIST’s Online Electric Vehicle (OLEV) really grabs my attention because the vehicle receives its needed electricity from a cable buried underground, not from batteries. Still, many challenges lie ahead for the electric vehicle to be commercialized, but I think, today, I saw the future of electric vehicles from the KAIST project,” explained Professor Lee. Professor Lee came to Daejeon to attend the “2010 International Workshop on Information Technology (IT) Convergence,” which was held on February 19, 2010 at KAIST’s Information and Communication Convergence (ICC) Campus. “I rode the bus and saw its instrument panel, which displays figures of electricity picked up from the ground. The bus presents the possibility of an electric car that can actually be built in the near future,” added Professor Lee. Professor Lee, however, pointed out that a number of issues should be addressed beforehand to commercialize OLEV, such as public concerns about magnetic waves, the economic impact of laying power strips underground, and battery efficiency as an alternative to petroleum based fuel. Nonetheless, he said that given people’s increased awareness of the problems associated with CO2 emissions, OLEV’s development is timely. “As far as I know, there has been no research in the US to develop an electric car that receives electricity from cables buried beneath the road. It is creative and ambitious for KAIST to try to find the technological breakthrough necessary for the development of electric cars,” Professor Lee stated. Professor Lee further commented, “So far, batteries on electric cars are heavy and bulky, and they require frequent recharging. I think KAIST has provided a solution to address this issue.” Graduating from Yale University and Massachusetts Institute of Technology (MIT), Professor Lee earned his doctoral degree in Electrical Engineering and Computer Sciences from UC Berkeley. He worked for Bell Telephone Laboratories in Holmdel, New Jersey.
2010.03.03
View 13753
[Event Notice] International Workshop on Computer Science Education and Research
2010 Asia-Africa International Workshop on Computer Science Education and Research The Department of Computer Science at KAIST will host an international workshop on the education and research of computer science in Asia and Africa. The workshop, “2010 Asia-Africa International Workshop on Computer Science Education and Research” will be held on February 17-19, 2010 at a conference room located inside the KAIST Main Building. Deans of computer science departments from 13 different universities in Asia and Africa will attend the workshop. At the workshop, participants will introduce their own education and research programs and discuss ways to have mutual collaborations. This is the first time for representatives from the computer science and engineering departments of leading universities in the newly developing countries—for instance, Thailand, Vietnam, Nigeria, Egypt, and Indonesia—to attend a meeting organized by institutions based in Korea. These countries have a large amount of natural resources and great potential to grow as a front runner in the information technology (IT) sector. Professor Key-Sun Choi, Dean of Computer Science Department at KAIST, hopes that the workshop will be a place where participated universities discuss mutual cooperation and collaboration; exchange their ideas and knowledge of course management and education and research experiences; and share their vision of global leadership to advance the development of computer science and engineering. Dean Choi mentioned that his department has also had consultations with the Korean government regarding a possible exchange program to select 10 or 20 members of faculty and students from universities in the newly developing nations for a doctoral course at KAIST. The exchange program, he said, would attract many of excellent candidates from nations with an emerging market for the IT industry to study at KAIST. The highly trained workforces who finish the KAIST doctoral program will contribute not only to their nations’ IT development but also to Korea’s.
2010.02.18
View 13998
A Breakthrough for Cardiac Monitoring: Portable Smart Patch Makes It Possible for Real-time Observation of Heart Movement
Newly invented device makes the monitoring easier and convenient. Professor Hoi-Jun Yoo of KAIST, Department of Electrical Engineering, said that his research team has invented a smart patch for cardiac monitoring, the first of its kind in the world. Adhesive and can be applied directly to chest in human body, the patch is embedded with a built-in high performance semiconductor integrated circuit (IC), called Healthcare IC, and with twenty five electrodes formed on the patch’s surface. The 25-electrodes, with a capability of creating various configurations, can detect cardiac contractions and relaxations and collect electrocardiogram (ECG) signals. The Healthcare IC monitors ECG signals and sends the information to a portable data terminal like mobile phones, making it possible for a convenient, easy check up on cardiac observations. The key technologies used for the patch are the Healthcare IC that measures cardiovascular impedance and ECG signals, and the electronic circuit board made of four layers of fabric, between which electrodes, wireless antenna, circuit board, and flexible battery are installed. With the P-FCB (Planar Fashionable Circuit Board) technology, the research team explained, electrodes and a circuit board are directly stacked into the fabric. Additionally, the Healthcare IC (size: 5mm x 5mm), which has components of electrode control unit, ECG and cardiovascular resistance detection unit, data compression unit, Static Random Access Memory (SRAM), and wireless transmitter receiver, is attached on the fabric. The Healthcare IC is operated by an ultra-low electrical power. Like a medicated patch commonly used to relieve arthritis pains, the surface of smart patch is adhesive so that people can carry it around without much hassle. A finished product will be 15cm x 15 cm in size and 1mm high in thickness. The Healthcare IC can measure cardiovascular impedance variances with less than 0.81% distortion in 16 different configurations through differential current injectors and reconfigurable high sensitivity detection circuitry. “The patch will be ideal for patients who suffer a chronic heart disease and need to receive a continuous care for their condition. Once commercialized, the patch will allow the patients to conduct a self-diagnosis at anytime and anywhere,” said Yan Long, a member of the research team. There has been a continuously growing demand worldwide since 2000 for the development of technology that provides a suitable healthcare management to patients with a chronic heart disease (e.g., cardiovascular problems), but most of the technology developed today are only limited to monitoring electrical signals of heart activity. Cardiovascular monitors, commonly used at many of healthcare places nowadays, are too bulky to use and give uncomfortable feelings to patients when applied. Besides, the current monitors are connected to an electrical line for power supply, and they are unable to have a low power communication with an outdoor communication gadget, thus unavailable for wide use. Professor Yoo gave his presentation on this new invention at an international conference, International Solid-State Circuits Conference, held on February 8-10 in San Francisco. The subject of his presentation was “A 3.9mW 25-electorde Reconfigurable Thoracic Impedance/ECG SoC with Body-Channel Transponder.” (Picture 1) Structure of Smart Patch (Picture 2) Smart patch when applied onto human body (Picture 3) Data received from smart patch (Picture 4) Healthcare IC
2010.02.17
View 15336
Indoor Localization System for Mobile Devices Developed by KAIST Research Team
The technology will be available to smart phone users around the world through Goole Apps Store. The wireless fidelity (WiFi)-based indoor localization can be installed on smart phones for commercialization, a technology developed by a research team at KAIST. The KAIST research team, led by Professor Dong-Soo Han, Department of Computer Science and Engineering, explained that the technology offers smart phone users, e.g., Google’s Android phone and Apple’ iPhone, a unique way to recognize their location through WiFi Open Radio Map. WiFi Open Radio Map is built with WiFi Location Fingerprint that contains wireless local area network (LAN)’s signal strength and wireless access points (AP) number, and with location information. Through using the Map, WiFi-based indoor localization recognizes the location of smart phones and sends the location information to the phones. Since the technology uses WiFi signal information only to recognize the whereabouts of phones, it can be widely used in the future, without installing extra machines and equipment for detection, for a complicated, large indoor environment, where the Global Positioning System (GPS) is not available. Currently, Professor Han has established WiFi Open Radio Map inside and outside of a few buildings at KAIST and developed several location based application services to perform a beta testing. He plans to open and distribute the technology to smart phone users through Google and Apple Apps Store in early 2010. Collaborations with major smart phone makers such as SK Telecom, Korea Telecom, and Samsung as well as outdoor/indoor localization manufactures and suppliers will also be sought, according to Professor Han. Professor Han is invited to an international conference, Eighth Annual IEEE International Conference on Pervasive Computing and Communications, slated for early April 2010, in recognition of his work. At the conference, he will give a presentation on WiFi based indoor localization technology and conduct its demo version.
2010.02.10
View 12114
KAIST Research Team Identified Promising New Source to Obtain Stem Cells
KAIST Research Team Identified Promising New Source to Obtain Stem Cells A research team at KAIST led by Professor Gou-Young Koh, M.D. and Ph.D., of the Department of Biological Sciences, has found evidence that fat tissue, known as adipose tissue, may be a promising new source of valuable and easy-to-obtain regenerative cells called hematopoietic stem and progenitor cells (HSPCs). HSPCs are adult stem cells that have the ability to generate and develop into many different kinds of cells. They are now used to repair damaged tissues and are being studied for their potential to treat a vast array of chronic and degenerative conditions such as leukemia. Mostly found in bone marrow but with a limited quantity, HSPCs are hard to cultivate in vitro, thus becoming an obstacle to use them for research and therapeutic purposes. Within the adipose tissue is a special cell population known as the stromal vascular fraction (SVF), which share similar properties to those in the bone marrow. Cells in the bone marrow and SVF have the ability to differentiate into several cell types. In addition, both adipose and bone marrow offer similar environments for optimal stem cell growth and reproduction. Given the fact that adipose and bone marrow tissues share similar properties, Dr. Koh and his team conducted a research, injecting granulocyte colony-stimulating factor (G-CSF), a growth hormone used to encourage the development of stem cells, into an adipose tissue of a mouse whose bone marrow is damaged. As a result, the team has found that the SVF derived from adipose tissue contains functional HSPCs capable of generating hematopoietic (blood-forming) cells to repair the damaged bone morrow. The Ministry of Education, Science and Technology nominated the KAIST research as one of its sponsoring 21st Century Frontier R&D Programs. Director Dong-Wook Kim of Stem Cell Research Center (SCRS) that oversees the KAIST team expressed a possibility to use the adipose tissue as an alternative source to obtain stem cells for regeneration medicine. Dr. Koh also said, “It’s been a well known method to extract HSPCs from the bone morrow or blood, but it’s the first time to identify adipose tissue, before considered useless, as a new possible supplier for functional and transplantable HSPCs.” The study results have received an important recognition from the academia—the American Society of Hematology published the research as a main article in its official journal, Blood, for the February 4th, 2010 issue, which is the most citied peer-reviewed publication in the field.
2010.02.05
View 12681
Op-Ed by Dean Ravi Kumar, KAIST Business School, for MK English News
Professor Ravi Kumar, Dean of Business School at KAIST, wrote an op-ed for MK English News, dated February 3, 2010, on "Korea’s doing business in India". Below is his article: India: Opportunity or Frustration? by Dr. Ravi Kumar, Dean of KAIST Business School On January 26, President Lee Myung-bak was the chief guest at India’s Republic Day parade and festivities, an honor that has been bestowed on Vladimir Putin of Russia and Nicolas Sarkozy of France in recent years. President Lee signed a strategic partnership agreement with Prime Minister Manmohan Singh, was successful in getting the Indian government to issue permits for POSCO to break ground on their US$ 12 billion steel plant and is positioning Korea as a serious contender in India’s future purchase of nuclear power plants and trainer aircraft. Doosan Heavy was successful in getting a billion dollar order last week to build a coal-fired power plant in India and Hyundai Motors has doubled its car production capacity in Chennai with 20% Indian market share. Samsung and LG have dominant market share in the Indian consumer electronics and home appliances sector, hiring thousands of Indians this year to support their growth. Wow, all this points to India and Korea on target to double their trade to US$ 30 billion by 2014. Last week, a group of our KAIST IMBA students with considerable business experience interviewed me for one of their class projects. Their topic: Indian culture/society and its impact on doing business in India. One of their questions probed the notion of time in Indian culture and business etiquette since they had heard that Indians are not on time for appointments/meetings. I had to explain to them that India originated from one of the oldest civilization (Indus Valley) that goes back five thousand years and this is one reason that allows Indians to think of time as being continuous and forever. Another aspect of culture that impacts Indian sense of endless time is that of re-incarnation—Indians who are predominantly Hindus believe that one is reborn again and again until one lives a purely spiritual life and becomes one with the divine being. And finally, Indians believe in fate, that their past lives (and sometimes, where the planets were located when they were born) define, in some sense, the kind of life they are going to lead in this current life. Given these three factors, there is no sense of “palli palli” in Indian life and this can be very frustrating to foreigners. So, my advice to Korean companies and executives--have a lot of patience and be ready for endless diversity. The country that can send sophisticated moon probes can also not have electricity or clean water for millions of its citizens. When you travel from one state to another, beware that the actual language, food preparation, philosophy of government and even clothing that people wear may differ remarkably. India is really like the European Union, with different languages, different state governments, different cultures and a lot of the infrastructure still to be built. An opportunity, you bet—but tomorrow, maybe not!
2010.02.04
View 11711
President Nam Pyo Suh of KAIST discussed cooperation with KUSTAR on the training of skilled manpower for research and development (R&D)
Representatives from Korea Advanced Institute of Science and Technology (KAIST), Khalifa University of Science, Technology and Research (KUSTAR), Emirate Nuclear Energy Corporation (ENEC), and the Institute of Applied Technology (IAT) had a meeting on mutual cooperation at the Intercontinental Hotel in Abu Dhabi, the United Arab Emirates (UAE), on January 14, 2009. Participants of the meeting were President Nam Pyo Suh of KAIST, President Arif Sultan Al Hammadi of KUSTAR, President Mohamed Al Hammadi of ENEC, and Director General Abdullatif Mohamed Al Shamsi of IAT. A press conference on the training of skilled manpower for research and development (R&D) in the UAE followed afterwards. At the end of December in 2009, a Korean consortium led by Korea Electric Power Corporation (KEPCO) beat bids from its competitors to construct four nuclear power plants in the UAE. Representing the consortium, Minister Kyung Hwan Choi of Knowledge Economy Ministry signed a comprehensive agreement with KUSTAR and the Institute of Applied Technology (IAT) for the delivery of nuclear power plants. On his visit, President Suh discussed with KUSTAR the agreement above in greater detail on subjects, where KAIST renders its cooperation, such as research collaboration, university degree program, and training to produce qualified personnel necessary for the development of UAE’s nuclear energy industry. On research collaboration, sharing its expertise and knowledge accumulated years from the operation of academic and research programs, KAIST agreed to provide cooperation to KUSTAR in developing the latter as a leading science, technology, and research university in ten years through mutual activities such as research collaborations, recruitment and exchange of outstanding researchers and graduate students, expansion of research facilities, and creation of major research policies. Furthermore, in support of nuclear energy program in the UAE, KAIST agreed to develop a joint research program in nuclear engineering and exchange faculty members and students for research collaboration. On a university degree program, KAIST agreed for mutual cooperation to launch academic programs at KUSTAR, covering BSc, MSc, and PhD degrees to specialize in areas such as mechanical engineering, electrical engineering, nuclear engineering, biomedical engineering, nano technology, science, and information technology. To that end, KAIST will dispatch its faculty to KUSTAR; provide assistance in developing curriculum and teaching materials; and exchange students for research collaboration. President Arif of KUSTAR mentioned that the university will cooperate with the relevant institutions in Korea, i.e., Korea Development Institute (KDI) and the Korea Institute of Nuclear Safety (KINS), to train skilled workers required for the development of nuclear energy program in the UAE. He also added, “These cooperative programs will introduce more educational opportunities to our students, and as a result, they can make greater contributions to the development of our nation’s future technologies in various areas. Our students will have a chance to study a broad range of academic subjects through partnership made with the Republic of Korea, and I expect to see improvements in our engineering programs by integrating KAIST’s state-of-the-art academic courses into our system.” President Arif expressed his hope “to increase cooperation beyond the agreement made between the two countries, like allowing more exchanges and interactions with KAIST for the development of science and technology in Korea and the UAE.” “Establishing mutual cooperation between KAIST and KUSTAR is a historic event not only for our two universities but also for our two countries. The two universities will make a great contribution to the improvement of the future of humanity by working together to solve the most important, difficult issues faced in the 21st century,” said President Suh. He also said that “all members of KAIST community will make our utmost efforts to advance the quality of education in two schools and to implement innovative researches through mutual cooperation.” KUSTAR, a national university in the UAE, was founded on February 13, 2007 by a mandate of the current President Shaikh Khalifa Bin Zayed Al Nahyan to create a higher education institute. KUSTAR has been building its permanent campus in Abu Dhabi, the capital of UAE since establishment and merged with the campus in Sharjah (formerly known as Etisalat University College with 18 years of history) in 2008. The University offers education and research programs in five disciplines of engineering, logistics and management, health science, homeland security, and applied science. There are more or less 30 foreign accredited universities set up in the UAE from countries like the US, UK, Australia, France, Ireland, and Canada. Examples of such, among other things, are New York University Abu Dhabi campus and Middlesex University Dubai campus. Many of the foreign universities in the UAE, however, have colleges of pharmacy, computer science, aviation, management information, fashion design, business management, and medical science including Harvard Medical School Dubai Center, but not many in science and research. Therefore, KAIST’s assistance in KUSTAR’s endeavor to become a leading science and research university in the UAE is timely. The current government of UAE anticipates, with a great interest, to see a leading science and research intuition built in their nation. Attachment: Current Status of Universities in the UAE as of 2009 Background Information The United Arab Emirates (UAE) is a federation of seven emirates (Abu Dhabi, Dubai, Sharjah, Ajman, Umm al-Quwain, Ras al-Khaimah, and Fujairah) situated on the Arabian Peninsula, which borders with Oman and Saudi Arabia. The UAE has the world"s sixth largest oil reserves. As of 2008, its gross domestic product is $2,621,000.5 million and its nominal per capita gross domestic product is $5 5,028, becoming one of the most developed economies in the Middle East. The UAE’s total population as of the said year is 4,760.4 thousand, and its purchasing power per capita is 40th largest in the world. The UAE’s Human Development Index for Asian continent is relatively high, ranking 31st globally. In 1985, the UAE launched its own airline, Emirates Airline, which has become one of the fastest growing airlines in the world. The Emirates Airline is a sponsor for Arsenal soccer club. The Republic of Korea established full diplomatic relations with the UAE in June of 1980. On December 27, 2009, a Korean consortium led by Korea Electrical Power Corporation (KEPCO) signed a contract with the UAE to build nuclear power plants.
2010.01.15
View 16774
<<
첫번째페이지
<
이전 페이지
61
62
63
64
65
66
67
68
69
70
>
다음 페이지
>>
마지막 페이지 78