본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
College+of+Engineering
by recently order
by view order
KAIST To Hold Robot Competition
KAIST To Hold Robot Competition KAIST (President Nam-Pyo Suh) will be holding ‘the 6th Intelligent SoC Robotwar 2007’ and is now receiving online applications at the official web site of the competition, www.socrobotwar.org. Application deadline is May 31, Thursday. ‘Intelligent SoC Robotwar’ is a competition of intelligent robots employing System on Chip (SoC) that commenced in 2002. In the competition, participants will embody their ideas in the same intelligent robot platforms and robot bodies, and how well the ideas are embodied will decide winners. In the part of tank robot competition (left photo), tank-like robots attack enemy robots by using laser, which demands technologies of scene analysis, radio communication and speech recognition. Hence, a variety of recognition algorithms and motion algorithms significantly affect match results. Taekwon robot competition is a fight competition of two-leg robots. In the competition, robots equipped with scene analysis technologies perceive the location, distance and motion of enemy robots and do motions of attack and defense with no control by operators. Teams must be made up of two or more persons including undergraduate or graduate students and all teams are entitled to participate in theoretical and practical education on platform boards for robots and intelligent robots. Final winner will be decided through qualifying test, preliminary matches and main matches. “The most distinct characteristic of this competition is robot’s intelligence takes top priority. It’s not remote control-operated robots but autonomously operating intelligent robots that will make Korean robot-related industries further profitable. Considering that last year, total 138 teams participated in the competition and an award from the Prime Minister was given to the winner, the competition undoubtedly hold the top position among robot-related competitions,” said Hee-Joon You, President of the competition committee and a professor of Electrical Engineering. Details on the competition are as follows:1. Purpose● To foster highly specialized technicians in the field of SoC through the embodiment of intellectual robots adopting SoC● To pave foundations for the enhancement of national competitiveness through the vitalization of IT-SoC and intellectual robot fields, next-generation growth momenta 2. Introduction(1) Sponsor: Ministry of Commerce, Industry and Energy(2) Organizer: KAIST(3) Competition parts: SoC tank robot competition, SoC taekwon robot competition(4) Rules of matches① SoC Tank Robot competition- 4M X 4M square field, 2 to 2 survival format- Three three-minute rounds per game (Winning two out of three rounds is required to win a game)- 5-minute long intermission ② SoC Taekwon Robot competition- Octagonal field with a radius of 2 M, 1 to 1 match format- Three three-minute rounds per game (Winning two out of three rounds is required to win a game)- Four downs per round make a loss, In the case of less-than-four-time downs within three minutes, attack points decide winner.- 5-minute long intermission (5) ScheduleApril 1 thru May 31, 2007 ApplicationJuly, 2007 OrientationAugust, 2007 Qualifying test August, 2007 Preliminary matchesOctober18 - 21, 2007 Main matches (6) ContactWeb site: http://www.socrobotwar.orgPerson in charge: Min-Hee Shin, 042-869-8937, maiwind@kaist.ac.kr
2007.04.26
View 15578
3rd Ubiquitous Fashionable Computer Contest
KAIST will be receiving until May 31, Thursday, applications for ‘the 3rd Ubiquitous Fashionable Computer (UFC)’ Contest, which will take place under the title of ‘Enjoy U-life with UFC’. The contest has begun in 2005 by KAIST and the Korean Society for Next-Generation Computing to raise people’s concern over next-generation computing and to prepare for the upcoming ubiquitous era. ‘UFC’ refers to a wearable computer small and light enough to be worn on human bodies or clothes so that users can use computers with no restriction while moving. This terminology was created by Korea. The contest includes designated items division and free items division, and not only university students but also general public can participate in the free items division. Teams qualified for the final contest in the designated items division will be offered wearable computer platform and 1.5 million won of production cost. The final contest will take place at the UFC fashion show stage ‘Next-Generation Computing Exhibition’ at KOEX in November. Hee-Joon You, Co-president of the Contest Committee and a professor of Electrical Engineering, stressed on the future life made joyful by IT technologies by saying, “Considering the title of the contest, we’ve selected ‘games enjoyed with UFCs’ as a mission of the designated items division to combine games, rising software, and wearing computers, hardware.” UFC is a brand-new field that fuses IT technologies and fashion, seeking the improvement of computer technologies and fashion creation. UFC, a further advanced wearable computer than existing ones, is an important advanced field that leads computer industries in the ubiquitous era.
2007.04.23
View 13990
A doctorate of Mechanical Engineering Named Recipient of Best Student Paper Award at International Society
Seung-Min Ryu, a doctorate of Mechanical Engineering under the supervision of Professor Dong-Yul Yang, has been named as a recipient of the best student paper award of the Society for Information Display (SID). The title of the paper is ‘the study on the fabrication of super-high resolution cathode separators by X-ray lithography processes’. He proposed at this paper the fabrication of 12 micron-thick cathode separators, which can fabricate further delicate separators than the current 50 micron-thick commercial PDP separators, thereby significantly improving the resolution of PDPs in the future. Ryu will make an oral presentation on this paper and win the award at the SID conference, which will take place in the U.S. for six days from May 20.
2007.04.23
View 14259
Prof. Bien Named IFSA Fuzzy Fellow
Prof. Bien Named IFSA Fuzzy Fellow Zeungnam Bien, a professor of Electrical Engineering, has been named a Fuzzy Fellow of the International Fuzzy Systems Association (IFSA). IFSA Fuzzy Fellows are named by the Fuzzy Fellows Committee based on the degree of technical contributions to the fuzzy set and its relevant fields and the degree of contribution for the establishment of fundaments in the field of advanced applied technologies development and fuzzy fields. IFSA has named total 36 fellows since its first one at the world congress in Prague in 1997. Professor Bien has worked as the chairman of the IFSA and will be officially named a Fuzzy Fellowship at the IFSA World Congress at Cancun, Mexico in June.
2007.04.19
View 13032
KAIST Opens CFTS
- To research the prevention of the illegal production of security technologies - Total 1.5 billion won of research expenses and 102 researchers to be invested for the next three years- Opening ceremony at the computer science building, KAIST on April 13 at 10 am KAIST (President Nam-Pyo Suh) will open ‘the Center of Fusion Technology for Security (CFTS)’ under the auspices of the Korea Minting & Security Printing Corporation (KOMSCO, President Hae-Sung Lee) to undertake researches over the prevention of illegal reproduction of security technologies. The opening ceremony was held at the computer science building, KAIST on Friday, April 13. Total .1.5 billion won of research expenses and 102 researchers will be invested in the center for the next three years. Main research fields are ▲ advanced IT-based information concealment methods ▲ utilization of energy transfer luminescence in host guest nano-substances ▲ the utilization of quantum-dot, non-crystal carbon and piezoelectric elements ▲ development of radio frequency identification (RFID), optical, biological security element-applied technologies, etc. “We’ll develop fusion technologies for security that can easily detect forgeries and alterations of security products by introducing advanced IT, optical, chemical engineering, and biological elements. The development of core technologies applied to security products will activate domestic security markets and enable the export of relevant technologies,” said General Research Director Heung-Kyu Lee, a professor of Computer Sciences.
2007.04.19
View 13249
KNS" International Journal Registered as SCIE
KNS" International Journal Registered as SCIE International journal ‘Nuclear Engineering and Technology’, published by the Korean Nuclear Society (KNS, President Si-Hwan Kim) under the supervision of Poong Hyun Seong, a professor of Nuclear and Quantum Engineering of KAIST, has been made a member of Science Citation Index Expanded (SCIE) administrated by Thomson Scientific. Thomson Scientific has notified such decision on April 14 and revealed the actual thesis title index will officially be notified within this year.
2007.04.19
View 12468
Prototype technologies for world highest efficiency PDP lightening developed by Prof. Choi
- Core technologies that will solve power consumption problems in PDPs- To be unveiled as invited paper at conference by Society for Information Display in May A domestic research team has developed prototype technologies for high efficiency lightening that can significantly improve the power consumption of Plasma Display Panels (PDP). A team headed by Kyung Cheol Choi, a professor of Electrical & Computer Science in KAiST (President Nam-Pyo Suh), has developed new cell structures and driving methods of PDP, typical digital television, which can increase the luminous efficacy of PDP four times and are to be unveiled at the conference by the Society for Information Display (SID) as an invited paper. The SID is the world largest information display society and the conference will be held at Long Beach, CA, U.S. on May 21. Prof. Choi
2007.04.18
View 11934
KAIST to build large-scale civil engineering experiment center
- Geo-Centrifuge experiment center of an area of about 1,712 square meters and an estimated construction cost of total 8.4 billion won - Simulation laboratory in the field of geotechnical engineering with state-of-the-art experiment equipment- Ground-breaking ceremony held on April 3 at 4 pm KAIST will construct ‘distributed shared-type Geo-Centrifuge experiment center’, a large-scale civil engineering laboratory that will study natural disasters such as earthquake, embankment collapse, etc. with ground structure miniatures. A two-story building with a basement occupying an area of about 1,712 square meters will become a landmark laboratory in the field of geotechnical engineering that can be used for the education, research, and social infrastructure design by universities, institutes, and corporations via high-speed information and communication network. The estimated construction cost is 8.4 billion won. The center will be composed of experiment building including geo-centrifuge laboratory, model-making room, workshop, geotechnical engineering laboratory, and specimen storehouse; and research building including control room, video conference room, electronic library, and research rooms. A variety of convenience facilities for researchers and video conference and remote monitoring system, with which researcher at remote distances can directly participate in experiments, will be provided in the research building, and world’s top-class experiment equipment such as geo-centrifuge with a turning radius of 5 meters, a maximum acceleration of 130 G (130 times faster than the acceleration of gravity), a preload of 2,400 kg and bidirectional shaking-table that can reproduce earthquakes-like wave during experiments, and robots that can reproduce construction procedures by a remote control will be installed. Geo-Centrifuge experiment refers to an experiment that reproduces natural disaster-like motions by making miniatures of large-scale ground structures such as dams, slopes, etc. and using centrifugal forces generated from high-speed rotation. This experiment can easily and rapidly reproduce actual motions of ground structures at a low cost, thereby being widely used for various geotechnical engineering researches such as evaluation of seismic safety, movement of soft ground, slope stability analysis, etc. The causes of the embankment collapse in New Orleans by Hurricane Katrina in 2005 were also revealed by simulation tests by this experiment. “The center will make possible a variety of experiments and researches that have never been available in Korea due to the lack of experiment infrastructure, therefore activate researches over the design and construction of large-scale social infrastructures. Making possible civil engineering researches demanding the use of large-scale equipment like Centrifuge, severely dependent on overseas technologies so far, will enhance the global competitiveness of Korean construction industry,” said Dong-soo Kim, President of the center. The center will be constructed as part of the Ministry of Construction & Transportation (MOCT)’s project for the establishment of distributed shared-style construction research infrastructure, which is designed to establish construction research infrastructures in a national level. The ground breaking ceremony was held at KAIST on April 3 at 4 pm.
2007.04.12
View 14092
Dual Degree Programs with TU Berlin
Dual Degree Programs with TU Berlin- Five students to be exchanged each year from this year, receive degrees from both schools- Final stage of negotiation with GIT, UCSB- On-going DDP negotiations with Delft University of Technology in Netherlands, Royal Institute of Technology in Sweden, Technical University of Denmark, Norwegian University of Science and Technology, Tsinghua University in China, Tokyo Institute of Technology- DDPs with Ecole Polytechnique, INSA Lyon of France, and University of Karlsruhe of Germany underway at department levels KAIST (President Nam-Pyo Suh) will begin Dual Degree Programs (DDP) with Technical University of Berlin (TU Berlin). The both recently reached an accord on the implementation of DDP and will exchange maximum five students each year, starting this year. The DDP allows each school involved to exchange students who meet the counterpart’s requirements one-by-one with prior consensus of departments to accept the students and to confer its own diplomas on students who complete the prescribed graduation requirements. TU Berlin, established in 1770, currently holds 28,344 enrolled students, among which 5,829 students are from abroad (over 20%) and provides lectures for more than 50 subjects in the fields of Humanities, Social Sciences, Economics and so on with its emphases on Natural Science and Engineering. TU Berlin has fostered a multitude of distinguished scientists, including 1986 Nobel Prize Recipient in Physics Ernst Ruska who developed an electronic microscope for the first time in the world. KAIST has now been eagerly promoting the DDPs with many distinguished foreign universities. It is on the final stage of the DDP negotiation with Georgia Institute of Technology (GIT) and University of California Santa Barbara (UCSB), and has already agreed with Tsinghua University in China to implement the DDPs in several advanced fields. Also, an agreement with Tokyo Institute of Technology (TIT) is soon to be made. With Ecole Polytechnique and INSA Lyon of France, and University of Karlsruhe of Germany, the negotiation is underway at department levels, and the DDPs are also being promoted with Milan Technical University of Italy, Delft University of Technology of Netherlands, Royal Institute of Technology (KTH) of Sweden, Technical University of Denmark (DTU), Norwegian University of Science and Technology (NUNT). “As global interests in East Asia arise, interests in KAIST by many foreign universities also increase. We are planning to expand the scope of this program to provide KAIST students with more opportunities of studying abroad and to attract more outstanding foreign students,” KAIST Dean of Academic Affairs Kwang-Hyung Lee explained. - Dual Degree Program (DDP)In DDP, schools involved can maintain their own curriculums and confer their own degrees on students who complete the graduation requirements. Therefore, students can receive degrees from both schools involved. Meanwhile, DDP is not the same concept with Joint Degree Program (JDP), in which schools involved establish a joint curriculum and confer a single joint degree on students.
2007.03.19
View 17912
Best Academic Award to Prof. Huen Lee
Professor Huen Lee, Department of Chemical and Biomolecular Engineering, received the Best Prize of KAIST Academic Awards at the 36th anniversary ceremony of KAIST. Professor Lee has published 43 international papers and 12 domestic papers for the past five years and achieved world’s distinguished academic performances such as the development of hydrogen storage technologies, the discovery of the principle on carbon dioxide-methane hydrate swapping, etc. Professor Lee published his paper on methane hydrate at Science in 2003, and Nature introduced his paper on hydrate storage technologies as ‘highlight research’ in 2005, commenting his research as a landmark performance to pave ways for the development of future hydrogen energy. His discovery on ‘the principle of carbon dioxide-methane hydrate swapping’, published by PNAS in 2006, also gained huge attraction across the world as one of the promising technologies that can solve energy problem and global warming crisis simultaneously. Meanwhile, the rest of the awardees of 2007 are as follows: - Academic Award: Professor Jongkyeong Chung, Dep. of Biological SciencesAssociate professor Changok Lee, Dep. of MathematicsAssociate professor Sangkyu Kim, Dep. of ChemistryProfessor Dae-gab Gweon, Dep. of Mechanical Engineering - Creative Lecture Award: Associate professor Jaehung Han, Dep. of Aerospace Engineering - Excellent Lecture Award: Assistant profess Bong Gwan Jun, School of Humanities & Social Science Professor Joonho Choe, Dep. of Biological Sciences Professor Changwon Kang, Dep. of Biological Sciences Professor Seunghyup Yoo, Div. of Electrical Engineering Associate professor Otfried Cheong, Div. of Computer Science Professor Hoe Kyung Lee, Graduate School of Finance - Contribution Award: Professor Sung Chul Shin, Dep. of Physics Professor Bowon Kim, Graduate School of Culture Technology Professor Jisoo Kim, Graduate School of Finance - International Cooperation Best Award: Professor Hyung Suck Cho, Dep. of Mechanical Engineering - International Cooperation Award: Professor Kunpyo Lee, Dep. of Industrial Design Professor Soon Hyung Hong, Dep. of Materials Science & Engineering Professor Sungjoo Park, Graduate School of Culture Technology
2007.03.19
View 17292
KAIST Names Three Distinguished Professors
KAIST Names Three Distinguished Professors - Three professors having achieved world’s distinguished research and education performances- Special incentives and non full-time position after retirement age to be offered KAIST (President Nam-Pyo Suh) has named three Distinguished Professors, the most honorable positions in KAIST, for the first time in its history. The three professors are Choong-Ki Kim, Dep. of Computer Science, Sang-Yup Lee, Dep. of Chemical and Biomolecular Engineering, and Kee-Joo Chang, Dep. of Physics. Professor Kim has made significant contributions to the advancement of Korea’s semiconductor field. He developed and put into a practical use ‘CCD Imaging Element’, a core technology in the multimedia era and the most widely used imaging sensor, for the first time in the world. He also promoted special education programs with industrial bodies such as Samsung Electronics, Hynix Semiconductor, etc. to improve industry-academy cooperation programs of KAIST. In recent years, he is showing passionate activities for the development of KAIST, such as genius education, interdisciplinary education by the Graduate School of Culture Technology, and experiment education for undergraduate students. He received Hoam Prize in 1993 and the Order of Civil Merit Moran Medal in 1997, and is an IEEE fellow and the former Vice-president of KAIST. Professor Lee has showed outstanding performances in the field of Metabolic Engineering. He discovered the genome sequences of bacteria for the first time in the world and published a paper regarding his discovery applied to metabolic engineering technologies at Nature Biotechnology in 2004. He also published a 78-page paper, evaluated as the bible of prteomics, at the 70 years long Microbiology and Molecular Biology Review (MMBR). His research performances are 187 domestic and international papers, 203 patent applications, Young Scientist Award, 212 invited lectures from home and abroad, etc. Professor Chang has published about 200 papers in the field of Sold-State Physics and presented diverse theory models regarding semiconductor materials, his major research fields, at review articles, textbooks, academic conferences, etc. Particularly, he found out the essences of DX defects in GaAs semiconductors, a problem that had remained unsolved more than 10 years, and his paper on this has been cited so far more than 500 times. Professor Chang, named as one of the Nation’s Great Scholars in 2005, has 15 papers as cited more than 100 times and records the number of citation indexed by SCI at 4,847, third place among all scientists in Korea. Distinguished Professors are the most honorable positions in KAIST, and only professors achieving world’s distinguished research and education performances can be Distinguished Professors. Being Distinguished Professors demands recommendations from President, Vice-president, Deans of College, and Department Heads and favorable evaluations by domestic and overseas professionals. Distinguished Professors will be offered special incentives and appointed as non full-time faculty even after their full retirement age. KAIST will hire outstanding human resources in highly promising research fields through its novice systems including Distinguished Professors System, etc. to build and retain world’s best faculty.
2007.03.19
View 14363
Professor Seong-Ihl Woo Develops New High-Speed Research Method
Professor Seong-Ihl Woo Develops New High-Speed Research Method Reduce research periods and expenses for thin film materials several ten times Posted on the online version of Proceedings of National Academy of Sciences of the United States of America (PNAS) on January 9 A team led by Seong-Ihl Woo, a professor of KAIST Department of Chemical & Biomolecular Engineering and the director of the Center for Ultramicrochemical Process Systems, has developed a high-speed research method that can maximize research performances and posted the relevant contents on the online version of Proceedings of National Academy of Sciences of the United States of America (PNAS), a distinguished scientific journal, on January 9, 2007. Professor Woo’s team has developed a high-speed research method that can fabricate several tens or several thousands of thin films with different compositions (mixing ratio) at the same time and carry out structural analysis and performance evaluation more than ten times faster and accurately, which leads to the shortening of the research processes of thin film materials. This is an epoch-making method that can reduce research periods and expenses several ten times or more, compared to the previous methods. The qualities of final products of electronic materials, displays, and semi-conductors depend on the features of thin film materials. Averagely, it takes about two weeks or longer to fabricate a functional thin film and analyze and evaluate its performances. In order to fabricate thin film materials in need successfully, more than several thousand times of tests are required. The existing thin film-fabricating equipment is expensive one demanding high-degree vacuum, such as chemical vapor deposition, sputtering, physical vapor deposition, laser evaporation, and so on. In order to fabricate thin films of various compositions with this equipment, a several million won-worth target (solid-state raw material) and precursors (volatile organic metal compound) pricing several hundreds won per gram are required. Therefore, huge amount of experiment expense is demanded for fabrication of several ten thousands of thin films with various compositions. Professor Woo’s team has developed ‘combinatorial droplet chemical deposition’ equipment, which does not demand high-degree vacuum and is automated by computers and robots, by using a new high-speed research measure. The equipment is priced at about 1/5 of the existing equipment and easy for maintenance. This equipment uses cheap reagents, instead of expensive raw materials. Reagents necessary to form required compositions are dissolved in water or proper solvents, and then applied by high frequencies to make several micrometer-scaled droplets (fine liquid droplet). Theses droplets are moved by nitrogen and dropped onto a substrate, which is to be fabricated into a thin film, and then subsequent thermal treatment is applied to the substrate to fabricate a thin film of required composition. At this moment, several tens or several hundreds of thin films with various compositions can be fabricated at the same time by reducing the size of thin film specimens into millimeter scale with the use of shade mask and adjusting vaporization time with masks, the moving speed of which can be adjusted. The expenses for materials necessary for the fabrication of thin films with this equipment amount to several ten thousands won per 100 grams, which is in the range of 1/100 and 1/10 of the previous methods, and the research period can be shortened into one of several tenth. “If this new method is applied to the development of elements in the fields of core energy, material and health, which have not been discovered by the existing research methods so far, as well as researches in thin film material field, substantial effects will be brought,” said Professor Woo. ‘Combinatorial droplet chemical vaporization’ equipment is pending a domestic patent application and international patent applications at Japan and Germany. This equipment will be produced by order and provided to general researchers.
2007.02.02
View 15645
<<
첫번째페이지
<
이전 페이지
51
52
53
54
55
56
57
58
>
다음 페이지
>>
마지막 페이지 58