본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
TR
by recently order
by view order
World?'s First Automated Maritime-Docking between Naval Vessels
KAIST demonstrated the technology that allows automated maritime docking between naval vessels on the 26th of April at Busan, Korea. The docking technology is seen as one of the key components for the mobile harbor as it prevents collision between two naval vessels upon docking. It was recognized as an important technology worldwide, but its technological limitations made it hard to commercialize. The demonstrated included approaching a barge next to a cargo vessel, performing automated docking, and maintaining the docking and solutions in the advent of an emergency. The mobile harbor is, in essence, is a ‘moving port’ and the automated docking technology is imperative to commercialize the mobile harbor. In order for a large container ship to unload cargo, the mobile harbor needs to approach the container ship and dock onto the side of the ship. The technology required to keep the two moving vessels docked, out at sea, in an efficient and safe manner, is daunting. The conventional method involved sailors tying the two vessels together with rope which made it time consuming and hard to react quickly in emergency situations. The KAIST mobile harbor research team developed the docking technology with ‘Mirae Industrial Machine’ Maritime Corporation, and ‘Ocean Space’. The mobile harbor will allow two vessels to perform loading and unloading of cargo regardless of wind and current, using robotic arms, vacuum attachment pads, wench, and are a complex, integrated system. KAIST is planning on having a demonstration that encompasses all the technology required for mobile harbor: from the docking technology to the stabilizing crane technology. Advancements made by KAIST are expected to speed up the commercialization and the real life application of mobile harbor.
2011.05.11
View 10214
From Pencil Lead to Batteries: the Unlimited Transformation of Carbon
Those materials, like lead or diamond, made completely up of Carbon are being used in numerous ways as materials or parts. Especially with the discovery of carbon nanotubes, graphemes, and other carbon based materials in nanoscale, the carbon based materials are receiving a lot of interest in both fields of research and industry. The carbon nanotubes and graphemes are considered as the ‘dream material’ and have a structure of a cross section of a bee hive. Such structure allows the material to have strength higher than that of a diamond and still be able to bend, be transparent and also conduct electricity. However the problem up till now was that these carbon structures appeared in layers and in bunches and were therefore hard to separate to individual layers or tubes. Professor Kim Sang Wook’s research team developed the technology that can assemble the grapheme and carbon nanotubes in a three dimensional manner. The team was able to assemble the grapheme ad carbon nanotubes in an entirely new three dimensional structure. In addition, the team was able to efficiently extract single layered grapheme from cheap pencil lead. Professor Kim is scheduled to give a guest lecture in the “Materials Research Society” in San Francisco and the paper was published in ‘Advanced Functional Materials’ magazine as an ‘Invited Feature Article’.
2011.05.11
View 11668
Low Cost and Simple Gene Analysis Technology Developed
Professor Park Hyun Kyu of the Department of Biology and Chemical Engineering has developed a ‘real time CPR’ using Methylene Blue (nucleic acid bonding molecule with Electro-Chemical property). The current gene analysis being used in the field is the real time PCR (Polymerase Chain Reaction) which takes advantage of the luminescent property of the gene and therefore requires expensive machines and chemicals to run. By contrast, the electro-chemical method is easy to use and low cost and, most importantly, it allows the machine to become small and portable. Professor Park’s research team used the decrease in the electro-chemical signal when the Methylene Blue reacts with nucleic acid and applied this to PCR which allowed for the real time analysis of the nucleic acid amplification process. With the result of the experiment as the basis, the team was able to perform a trial with Chlamydia trachomatis, a pathogen that causes sexually transmitted disease. The result showed that the electro-chemical method showed the same performance level as the real time PCR, which proved that the technology can be applied to diagnosing various diseases and gene research.
2011.04.30
View 10194
Industrial Liaison Program Membership Implemented
KAIST implemented, for the first time as a Korean University, the Industrial Liaison Program Membership (ILPM). ILPM is a structure where it does not limit the university as a minor technological counseling institute and encourages the university to provide expert services that the companies need in a proactive manner. The ILPM is an Industry-Scholar Cooperative Model that offers companies with patents, technologies, labor force, research tools, and information to the companies all the while serving as the leader in research and development that will bring competitiveness to the company. The first member of the ILPM at KAIST is ‘Yeul Chon’ Chemicals which is a subsidiary of the Nong-Shim Group and is a leading group in the field of high tech packaging, film and environmentally friendly materials. KAIST and Yeul Chon Chemicals signed a MOU for technological cooperation and agreement to become a member of ILPM at KAIST on the 22nd of March. With the agreement, the Yeul Chon Chemicals will now have access to all of KAIST’s information, technology, students, and counseling from professors.
2011.04.13
View 9688
Artificial Spore Production Technology Developed
The core technology needed in the development of ‘biosensors’ so crucial in diagnosing illnesses or pathogens was developed by Korean research team. KAIST’s Professor Choi In Seung of the department of Chemistry developed the technology that allows for the production of Artificial Spore by selectively coating a live cell. In the field of engineering the problem in developing the next generation bio sensor, the cell based sensor, was that it was difficult to keep a cell alive without division for a long time. Once a cell is taken out of the body, it will either divide or die easily. Professor Choi’s research team mimicked the spore, which has the capability to survive harsh conditions without division, and chemically coated a live cell and artificially created a cell similar to that of a spore. The physical and biological stabilities of the cell increased by coating an artificial shell over the yeast cell. The shell is composed with a protein similar to that of the protein that gives mussels its stickiness. In addition by controlling the thickness of the shell, the division rate of the yeast can be controlled. Professor Choi commented that this technology will serve as the basis for the single cell based biosensor. The research was conducted together with Professor Lee Hae Shin of KAIST department of Chemistry and Professor Jeong Taek Dong of Seoul National University’s department of Chemistry and was published as the cover paper of ‘Journal of the American Chemical Society’.
2011.04.01
View 13468
2011 Wearable Computer Competition Participant Registration Started
The registration process for the ‘Wearable Computer Contest’ (WCC) held by KAST and Korea Next Generation Computing Institute. The contest is the only contest that designs wearable computers in Korea. This year’s theme is ‘Smart Wear for the Smart Life’ in response to the spread of smartphones. In 2010 the contest was run cooperatively with International Symposium on Wearable Computer (ISWC) and is fast becoming an international even with students from foreign universities attending. The participants will be putting forth an idea on wearable computers that have IT and fashion fused into it and actually produces such an outfit. The cost of producing a prototype will be provided by the holders and education of basics needed in producing a prototype like ubiquitous computing, wearable computer platform, human-computer interface, fashion and design. The restriction of theme was taken out of the equation and in its place, an idea tank involving handing in ideas in poster format was put into place. In addition the competition is no longer limited to undergraduates or graduate students. Detailed information on registration and of the contest itself can be found at www.ufcom.org .
2011.03.26
View 10194
A Light Weight, Energy Effcient Household Polysomnography (PSG) System Developed
A smart ‘household polysomnography (PSG) system’ was developed by domestic research team. Professor Yoo Hui Joon and his research team of KAIST’s department of Electricity and Electronic Engineering successfully developed a PSG system that is light weight and has high performance levels. The conventional PSG systems were complex with numerous lines and wires. The PSG is used to monitor biological signals during sleep and the monitored results are used to diagnose and cure sleep-related illnesses and disorders. However because of restrictions like the size of the machine, impurities, and the change in environment, multiple trials over several days were required to obtain accurate data. The system developed by the research team is lighter than a q-tip so as to not disturb the patient’s sleep. It also has Intelligent Circuit (IC) that detects when sensors come detached and automatically replaces the sensor with another sensor thereby allowing continual monitoring of the user. A low-power consuming circuit was implemented allowing the entire system to run continuously on a single coin battery for 10 hours which effectively decreased the weight of the system and simultaneously allows for uninterrupted monitoring of the user over the entire sleep cycle. Even a remote diagnosis system can be implemented. The user will don the PSG and sleep at home, ensuring that a normal heat beat rate, brain waves, breathing, etc. will be monitored. The data procured overnight can be sent to the experts online who will be able to diagnose remotely. The research team plans on performing research in cooperation with the KAIST hospital and U-Healthcare research. The research result is winning worldwide rave. The system was announced in the International Solid-State Circuits Conference (ISSCC) and was published in ISSCC magazine and in Japan’s NIKKEI Electronics January edition.
2011.03.25
View 12390
Late Dr. Ryu Geun Chul's Achievements and Generous Contributions
First Doctor in the field of Korean Traditional Medicine The late Dr. Ryu was born in 1926 and is the father figure of Korea’s Traditional Medicine and is its First Doctor (1976 Kyung Hee University), and was the vice-professor of Kyung Hee University of Medicine, Vice-Director of Kyung Hee Institute of Korean Traditional Medicine, and was the first chairman of the Association of Korea Oriental Medicine. He developed the painless acupuncture administering device for the first time in Korea in 1962, and succeeded in anesthetizing a patient for cesarean procedure using acupuncture in 1972. He even was the first to receive a medical engineering doctorate degree from the Moscow National Engineering School in April of 1996 and developed a stroke rehabilitation machine. Korea’s Most Generous Donor Dr. Ryu surprised the world by donating 57.8billion Won worth of real estate to KAIST in August of 2008. Dr. Ryu revealed that his reason for donating such a huge sum to KAIST was due to its focused students giving him the belief that the future of Korea is at KAIST and that the development of science and technology is necessary for Korea to develop into a world class nation and KAIST is the institute most suitable to lead Korea in the field. Dr. Ryu lived on KAIST campus after donating his entire fortune and even established ‘KAIST scholars and spacemen health research center’ and ‘Dr. Ryu Health Clinic’ as he also wanted to donate his knowledge. Even when he was a professor at Moscow National Engineering University in the late 1990s he carried out free medical work throughout Korea and in recognition of his devoted work, he was named honorary citizen from Chun Ahn city, San Chung city, and DaeJeon city. In 2007 he donated 450million Won to Cheon Dong Elementary School in Chun Ahn city to build a gymnasium and an indoor golf practice range. Role as Science and Technology Public Relations Officer Dr. Ryu volunteered to numerous lectures and interviews after donation to advertise science and technology. His belief that the development of science and technology is necessary for Korea’s development was the driving force behind his efforts at increasing interest and support for the field of science and technology. In addition, through interviews with MBC, KBS, SBS, KTV, Joong Ang Newspapers, Dong Ah Newspaper and other media mediums, Dr. Ryu improved the public perception on donations whilst increasing the pride of scientists and researchers by highlighting their importance and the importance of science and technology. In recognition of Dr. Ryu’s efforts, he received the 43rd Science Day Science and Technology Creation Award, 2010 MBC Social Service Special Award, and 2010 ‘Proud Chung Cheong Citizen’ Award.
2011.03.22
View 17998
'S+ Convergence CEO Program' Completion Ceremony
KAIST will be holding the first Completion Ceremony for the ‘S+ Convergence CEO Program’ which is a differentiated course with a new paradigm. The program offers a different syllabus from the existing CEO training programs and focuses on the fusion of industries and IT, fusion of management and security, and fusing together other future technologies. The course should provide the future CEO’s with the ability to plot a suitable creative management strategy in this day of rapid change and growth. The program invited a guest speaker every month, apart from the planed lectures. The guest speakers were the top of their respective fields. In addition, various activities like riding the OLEV or domestic workshops or educational trips abroad imparted the ability to take on a global perspective. The use of Social Network Services like twitter or facebook was educated in the free study period before the lecture began. As a result most of the graduates can now use these SNS freely, better preparing them for the technology oriented direction the world is striving in. The program will have a total of 54 graduates who come from companies from various industries, are politicians, and/or are government officials. The program name “S+ Convergence CEO Program” is imbedded with the program goal of training the best CEO’s by fusing together Smart Technology, Security, and Strategy.
2011.03.18
View 9910
KAIST paves the way to commercialize flexible display screens
Source: IDTechEX, Feb. 28, 2011 KAIST paves the way to commercialize flexible display screens 28 Feb 2011 Transparent plastic and glass cloths, which have a limited thermal expansion needed for the production of flexible display screens and solar power cells, were developed by researchers at KAIST (Korea Advance Institute of Science & Technology). The research, led by KAIST"s Professor Byoung-Soo Bae, was funded by the Engineering Research Center under the initiative of the Ministry of Education, Science and Technology and the National Research Foundation. The research result was printed as the cover paper of "Advanced Materials". Professor Bae"s team developed a hybrid material with the same properties as fiber glass. With the material, they created a transparent, plastic film sheet resistant to heat. Transparent plastic film sheets were used by researchers all over the world to develop devices such as flexible displays or solar power cells that can be fit into various living spaces. However, plastic films are heat sensitive and tend to expand as temperature increases, thereby making it difficult to produce displays or solar power cells. The new transparent, plastic film screen shows that heat expansion index (13ppm/oC) similar to that of glass fiber (9ppm/oC) due to the presence of glass fibers; its heat resistance allows to be used for displays and solar power cells over 250oC. Professor Bae"s team succeeded in producing a flexible thin plastic film available for use in LCD or AMOLED screens and thin solar power cells. Professor Bae commented, "Not only the newly developed plastic film has superior qualities, compared to the old models, but also it is cheap to produce, potentially bringing forward the day when flexible displays and solar panels become commonplace. With the cooperation of various industries, research institutes and universities, we will strive to improve the existing design and develop it further." http://www.printedelectronicsworld.com/articles/kaist_paves_the_way_to_commercialize_flexible_display_screens_00003144.asp?sessionid=1
2011.03.01
View 14388
Cho Cheon Shik Graduate School of Green Transportation Initiated
KAIST established the Graduate School of Green Transportation in efforts to participate actively in the green transportation market and train experts in the field. The opening ceremony was conducted in the KI building with President of KAIST Seo Nam Pyo and other dignitaries from Ministry of Land, Transport and Maritime Affairs, Korea Rail Network Authority, Korea Airports Corporation, Korea Railroad Research Institute, Land, Transport and Maritime Experts Training Institute, Seoul Development Institute, LG Innotech, Hyundai Rotem, and other major companies in the field of transportation attending. The graduate school was founded with funding from donation made by Chairman Cho Cheon Shik. Developer of OLEV Professor Cho Dong Ho is the dean of the school and 16 other professors are a part of the school. Courses offered include ‘Transportation Technology’ and ‘Transportation management’ and will focus mostly on allowing students to be a part of the graduate school with flexibility. In terms of research there is the OLEV and mobile harbor and research will be done on electric and electronics, mechanics, materials, aeronautics, maritime, construction, environment, and etc. and will be an interdisciplinary research. A memorandum of understanding was signed by the companies mentioned above which has now paved the way for experts to be trained and thus upgrade the level of technology in the field of green transportation. Professor Seo of KAIST commented, ‘Korea is ranked top 10 in the world for greenhouse gas emissions and it has become hard to avoid global pressure. The results of researched performed at KAIST will allow Korea to form a green, sustainable society leading in the field of green transportation and dominate the market.
2011.02.23
View 16806
Professor Min Beom Ki develops metamaterial with high index of refraction
Korean research team was able to theoretically prove that a metamaterial with high index of refraction does exist and produced it experimentally. Professor Min Beom Ki, Dr. Choi Moo Han, and Doctorate candidate Lee Seung Hoon was joined by Dr. Kang Kwang Yong’s team from ETRI, KAIST’s Professor Less Yong Hee’s team, and Seoul National University’s Professor Park Nam Kyu’s team. The research was funded by the Basic Research Support Program initiated by the Ministry of Education, Science, and Technology and Korea Research Federation. The result of the research was published in ‘Nature’ magazine and is one of the few researches carried out by teams composed entirely of Koreans. Metamaterials are materials that have physical properties beyond those materials’ properties that are found in nature. It is formed not with atoms, but with synthetic atoms which have smaller structures than wavelengths. The optical and electromagnetic waves’ properties of metamaterials can be altered significantly which has caught the attention of scientists worldwide. Professor Min Beom Ki’s team independently designed and created a dielectric metamaterial with high polarization and low diamagnetism with an index of refraction of 38.6, highest synthesized index value. It is expected that the result of the experiment will help develop high resolution imaging system and ultra small, hyper sensitive optical devices.
2011.02.23
View 17671
<<
첫번째페이지
<
이전 페이지
51
52
53
54
55
56
57
58
59
60
>
다음 페이지
>>
마지막 페이지 68