본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.27
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
AND
by recently order
by view order
Inexpensive Separation Method of Graphene Developed
The problem with commercializing graphene that is synthesized onto metals over a wide area is that it can not be separated from the metal. However, a groundbreaking separation technology which is both cheap and environment friendly has been developed. Prof. Taek soo Kim and Prof. Byung Jin Cho"s research teams have conducted this research under the support of the Global Frontier program and Researcher Support Program initiated by The Ministry of Education and Science and Korea Research Foundation. The research results have been posted on the online news flash of Nano Letters on februrary 29th. (Thesis title: Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process) The research has generated exact results on the interfacial adhesive energy of graphene and its surface material for the first time. Through this, the catalyst metal are no longer to be used just once, but will be used for an infinite number of times, thereby being ecofriendly and efficient. Wide area graphine synthesized onto the catalyst meatal are used in various ways such as for display and for solar cells. There has been much research going on in this field. However, in order to use this wide area graphene, the graphene must be removed from the catalyst metal without damage. Until now, the metal had been melted away through the use of chemical substances in order to separate the graphene. However, this method has been very problematic. The metal can not be reused, the costs are very high, much harmful wastes were created in the process of melting the metals, and the process was very complicated. The research teams of Professors Taek Su Kim and Byung Jin Cho measured the interfacial adhesive energy of the synthesized graphene and learned that it could be easily removed. Also, the mechanically removed graphene was successfully used in creating molecular electronic devices directly. This has thus innovatively shortened the graphene manufacturing process. Also, it has been confirmed that the metalic board can be reused multiple times after the graphene is removed. A new, ecofriendly and cost friendly method of graphene manufacturing has been paved. Through this discovery, it is expected that graphene will become easier to manufacture and that the period til the commercialization date of graphene will therefore be greatly reduced Prof. Cho stated " This reserach has much academical meaning significance in that it has successfully defined the surfacial adhesive energy between the graphene and its catalyst material and it should receive much attention in that it solved the largest technical problem involved in the production of graphene.
2012.04.04
View 16021
New Era for Measuring Ultra Fast Phenomena: Atto Science Era
Domestic researchers successfully measured the exact status of the rapidly changing Helium atom using an atto second pulse. Thanks to this discovery, many ultrafast phenomena in nature can now be precisely measured. This will lead to an opening of a new "Atto Science" era. Prof. Nam Chang Hee led this research team and Ph.d Kim Kyung Taek and Prof. Choi Nak Ryul also participated in this research. They have conducted the research under the support of the Researcher Support Program initiated by The Ministry of Education and Science and Korea Research Foundation. The research result was published in the prestigious journal "Physical Review Letters" on March 2nd. (Title: Amplitude and Phase Reconstruction of Electron Wave Packets for Probing Ultrafast Photoionization Dynamics) Prof. Nam Chang Hee"s research team used atto second pulse to measure the ultrafast photoionization. His team used atto second X-ray pulse and femto second laser pulse to photoionize Helium atoms, and measure the wave speed of the produced electron to closely investigate the ultrafast photoionization process. Atom"s photoionization measurement using an atto second pulse was possible using the research team"s high-energy femto second laser and high-performance photo ion measurement device. This research team succeeded in producing the shortest 60 atto second pulse in the world using high-harmonic waves. The research team used high-power femto second laser to produce atto second high-harmonic pulse from argon gas, used this to photoionize Helium atoms, and measured the ultrafast photoionization of the atoms. Prof. Nam Chang Hee said, "This research precisely measured the exact status of rapidly changing Helium atoms. I am planning to research on measuring the ultrafast phenomena inside atoms and molecules and controlling the status of the atoms and molecules based on the research result."
2012.04.04
View 11886
KAIST Confers Honorary Degree to CMU President Cohon
By DongJae Lee The KAIST Herald Staff Reporter On February 24, Dr. Jared L. Cohon, President of Carnegie Mellon University (CMU), visited KAIST to receive an honorary degree in science and technology and gave a lecture to the university’s students. Dr. Cohon is the eighth president of CMU and has held numerous other public and university positions. During his presidency, CMU has expanded globally and now takes part in joint programs around the world, including those with universities in Korea, Australia, India and Qatar. KAIST and CMU have been collaborating since 2005 in research projects, student and faculty exchange and dual degree programs. Before the 2012 Commencement Ceremony, Dr. Cohon met with The KAIST Herald and other news agencies for an interview. The interview started with Dr. Cohon giving a brief introduction of CMU. Like KAIST, CMU has a small but special composition and is dedicated to science and technology as well as business and the fine arts. CMU, founded in 1900, is also relatively young by US standards but has nonetheless grown into a world-class university. The power behind this rapid growth can be expressed by four key values: innovation and change, problem-solving, interdisciplinary cooperation, and hard work. The slogan “My heart is in the work” clearly expresses the values of CMU. One interesting aspect of CMU is its fine arts and business fields. While CMU is dedicated to science and technology, it also has many respected alumni in the aforementioned fields including Andy Warhol, a leading figure in pop art, and Randy Pausch, the author of The Last Lecture. CMU alumni have together won 6 Academy Awards, 22 Emmy Awards, over 100 Tony Awards and 20 Nobel Prizes. Regarding CMU’s joint projects with KAIST, as well as student and faculty exchanges, Dr. Cohon mentioned joint Ph.D. programs in Civil and Environmental Engineering and Mechanical Engineering and a joint Master’s program in Software Engineering. Currently, the Civil and Environmental Engineering joint Ph.D. program has one participant and the Software Technology Institute joint Master of Software Engineering program has 6 participants. Dr. Cohon mentioned that receiving an honorary degree in KAIST is a tremendous honor and that he is grateful to be recognized by such a wonderful university like KAIST.
2012.03.23
View 11639
Annual Future Knowledge Service International Symposium
Knowledge Service Research preparing for the future knowledge based society has been academically publicized. The First Annual Future Knowledge Service International Symposium was held in COEX Grand Ball Room Hall by KAIST’s department of Knowledge Service Engineering. Knowledge Service Engineering is a core component to the future knowledge based society and is the convergent result of decision making, recognition sciences, artificial intelligence, IT, and other knowledge management technologies from each of the industries. Therefore Knowledge Service Engineering will innovate the cooperation and communication between humans and machines thereby forming the center point of the development of knowledge society. The symposium was attended by 9 important figures from domestic and foreign academia, government representative, and key figures from industries. The symposium was based around debates concerning the role of the Knowledge Service Engineering in the future knowledge based society. The key note speaker was Chairman of Korea Science and Technology Information Research Institute Park Young Suh and the theme of the speech was ‘Change in Information Environment and Knowledge Service’. Director of National IT Industry Promotion Agency Kang Hyun Gu gave a lecture on the topic of ‘Important Knowledge Service Policies by National IT Industry Promotion Agency’. And from industry experts, Bradley K. Jensen (Manager of Microsoft Industry-Education Cooperation), Lee Kang Yoon (Research Director at IBM), Choi Yoon Shik (Head of Asia Future Human Resource Institute) proposed a direction for research and gave their account on recent trends of knowledge service from the perspective of onsite experience. Academic experts like Fred D. Davis (Professor at State University of Arkansas), Jussi Kantola (Professor at KAIST), Kim Young Gul (Professor at KAIST Management University), Yoon Wan Chul (Professor at KAIST Knowledge Service Engineering) gave the recent trends in academic research. The symposium was held in 3 sessions: ▲Policy of Korean Government ▲Academic Research Trend ▲Recent Trend and Application. More information can be found at http://kss.kaist.ac.kr
2012.01.31
View 10355
KAIST Ph.D Mihyun Jang Employed as Professor at Technische Universitat Graz
A Ph.D purely from Korea has been employed as a professor at Technische Universitat Graz. This is the news of Prof.Mihyun Kang (39) who has graduated from KAIST’s mathematics department. Prof.Kang has transferred on January 2012. KAIST explained that “it’s the first time for a mathematics Ph.D from Korea has been employed abroad.” Technische Universitat Graz of Australia is ranked the top third university within the country. It is a global university with 1,700 students from 78 different countries out of its 11,000 students. Prof. Kang researched mainly theories of combination including random graphing theories, analytical combination theories, and probabilistic combination theories. She has been employed as a lifetime professor through open recruitment where she competed with others through academic debates and interviews. Technische Universitat Graz valued Prof. Kang’s research highly made her the department head of the ‘Optimization and Discrete Mathematics department’ to create an environment where she could continuously research. Prof. Kang graduated from Jeju university majoring math educations and did her graduate studies in KAIST. She is a purely ‘Korean’ Ph.D. After her studies, she worked for Germany’s Humboldt University and Freie Universitat Berlin. In 2007, she was able to be employed as a professor in Germany, and in 2008, she was chosen as a Heisenberg fellow. Prof. Kang who had her research achievements recognized in Germany and Austria was also offered seat as professor in Ludwig Masximilan University of Germany and Alpenadria University in Austria, but chose Technische Universitat Graz.
2012.01.31
View 12459
Quantum Mechanical Calculation Theory Developed
An Electron Density Functional Calculation Theory, based on the widely used quantum mechanical principles and yet accurate and with shortened calculation period, was developed by Korean research team. *Electron Density Functional Calculation Theory: Theory that proves that it is possible to calculate energy and properties with only simple wave equations and electron densities. The research was conducted by Professor Jeong Yoo Sung (Graduate School of EEWS) and Professor William Goddard with support from WCU Foster Project initiated by Ministry of Education, Science and Technology and Korea Research Foundation. The result was published in the Proceedings of the National Academy of Sciences Journal. The research team corrected the error when performing quantum calculations that arises from the length of calculation time and incorrect assumptions and developed a theory and algorithm that is more accurate and faster. The use of wave equations in quantum mechanical calculations results in high accuracy but there is a rapid increase in calculation time and is therefore difficult to implement in large molecules with hundreds, or thousands of atoms. By implementing a low electron density variable with relatively less calculation work, the size of calculable molecule increases but the accuracy decreases. The team focused on the interaction between electrons with different spins to improve upon the speed of calculation in the conventional accurate calculation. The team used the fact that the interaction between electrons with different spins increases as it comes closer together in accordance with the Pauli’s Exclusion Principle. In addition the interaction between electrons are local and therefore can ignore the interactions between far away electrons and still get the total energy value. The team also took advantage of this fact and developed the algorithm that decreased calculation time hundredth fold. Professor Jeong commented that, “So far most of the domestic achievements were made by focusing on integrative researches by calculation science and material design communities but these involved short time frames. In areas that required lengthy time frames like fundamentals and software development, there was no competitive advantage. However this research is significant in that a superior solution was developed domestically”.
2012.01.31
View 12934
'Scientist-Engineer of the Month' for December: Professor Choi Joon Ho
Professor Choi Joon Ho (department of Biological Sciences) was made ‘Scientist-Engineer of December’ for his discovery of new gene (twenty-four) that helps biorhythm and proving that this gene helps control biorhythm. Professor Choi published 100 dissertations over the past 25 years and made significant advancements in the field of molecular virus and neurobiology. In 1995 Professor Choi uncovered the fact that the NS3 protein in C type hepatitis function as RNA helicase thereby opening the path to developing a cure for C type hepatitis; this is an international patent with Chiron corporation. The result was published in Biochemical and Biophysical Research Communications Journal and was the most domestically referred to dissertation in biological sciences in 1999. In addition Professor Choi published in Nature magazine in 1999, a dissertation that uncovered the fact that the DNA of papillomar virus has another protein (hSNF5) that direct it apart from ordinary proteins. In 2000~2005 Professor Choi published many dissertations in journals like Immunity, Cancer Research, Molecular and Cellular Biology, Oncogene, Journal of Virology, and etc. Professor Choi screened over 10,000 species of pomace fly mutations and discovered the twenty-four gene that affects the biorhythm of pomace flies. He analyzed this gene further and found a new function that was different from known biorhythm mechanisms. This research allowed a better understanding of biological clock of pomace flies and therefore was another step towards better understanding the control mechanism of human biological clock.
2012.01.31
View 10871
MOU: KAIST-Korea Internet & Security Agency
KAIST signed a MOU with the Korea Internet & Security Agency for the development of IT and International Security. As a result of the MOU interaction in ▲Exchange of personnel and materials for cooperative research for information protection ▲Information protection policy and technology ▲Education and training for developing information protection personnel, will be increased. Director of Cyber Security Research Center Joo Dae Joon commented, “Cyber-attack on national infrastructure like DDOS attacks can threaten the nation’s system” and that “the two institutes will establish a response system against cyber-attacks and train experts in information protection”.
2012.01.31
View 8306
Bio Pharmaceutical Business Center: Now Open
The Signboard Hanging Ceremony for the Bio Pharmaceutical Business Center for the Integrated Research for the field of Bio Pharmaceutics. 150 representatives from various bio pharmaceutics related businesses and institutes were present for this ceremony. The Ministry of Education, Science and Technology placed the Molecular Process research team, Personalized Drug Delivery Medium research team, and the newly formed Cancer Cell Detection using Blood research team at the Bio Pharmaceutical Business Center at KAIST.
2012.01.31
View 10186
KAIST to Support R&D Plans of Mid-Small Sized Enterprises
KAIST signed a MOU for the ‘Support for R&D Plans for Mid-Small Sized Firms’ with the Small and Medium Business Conference and Korea South-East Power Co. Ltd. KAIST and Korea South-East Power Co. Ltd. will now be improving their cooperation on supporting R&D plans to help the technology development and commercialization for Small and Medium Businesses. Korea South-East Power Co. Ltd. will now select 20 best qualified firms out of its 300 cooperating firms and suggest them as candidates to KAIST Business membership System. The suggested firms will be given: ▲Strategy R&D Planning ▲Consult Difficult Technology ▲Provide Information on Research Labs and Researchers among other various programs. The firms participating in the KAIST Business membership System will be able to minimize risk and increase its possibility for success on Development Technology. KAIST Business membership System is a program provided to firms for a membership fee, in order to create technological innovation and strengthen cooperation between university and industry.
2012.01.31
View 9967
A Step Closer to Ultra Slim Mobile Phone
Professor Baek Kyung Wook (department of Material Science and Engineering) succeeded in developing an ultra-thin conjugation technique that can perfectly replace the modular contact in electronic devices. The research team developed a compound material using ultra-fine solder-adhesive film and developed the vertical ultrasonic conjugation process thereby making a reliable utra-thin conjugation. The developed technique allowed for very thin and reliable conjugation and will be able to replace the socket type connector and is expected to revolutionize the electronic device industry. In mobile electronic devices like the smartphone, the trend is to incorporate various functional modules like camera, display, touchscreens, etc. in addition to striving for miniaturization of the device. Recently the problem was the fact that the number of modules within the device was increasing due to the incorporation of various functions, and consequently the volume that these modules took up increased as well, which made miniaturization almost impossible. Professor Baek‘s team succeeded in improving upon this problem by creating a compound material that has ultra-fine solder particles that can melt to form alloy fusion with the electrode and thermosetting adhesive film that can wrap around the electrode and provide mechanical protection. The use of this material made it possible to reduce the thickness of the connector by hundredth fold which improved electrical, mechanical properties and highly reliable. From a processing standpoint the conventional conjugation process involved heating the mechanical block and was therefore hard to manage its production and also consumed 1000W and took up to 15 seconds. By contrast, Professor Baek’s team’s new process uses only ultrasound to locally heat and melt the conjugation point itself thereby reducing power consumption to 100W and conjugation time to 1~5 seconds. The technique developed by Professor Baek and Lee Ki Won Doctorate student was awarded Excellent Dissertation Award by world famous journals like the Electronic Components and Technology Conference and is being recognized worldwide.
2012.01.31
View 11048
Interview with the president of Hong Kong University of Science and Technology
The president of Hong Kong University of Science and Technology (HKUST), Dr. Tony Chan, who is also a member of KAIST’s President Advisory Council (PAC), had an interview with the Korea Times, November 16, 2011 and shared his thoughts on some fundamental essentials that make a good science and technology university. He visited KAIST Campus on November 10th and had a meeting with students as part of the university’s mentor program between PAC members and the students. For the interview, please visit the link below: http://www.koreatimes.co.kr/www/news/special/2011/11/181_98928.html
2011.11.18
View 12023
<<
첫번째페이지
<
이전 페이지
41
42
43
44
45
46
47
48
49
50
>
다음 페이지
>>
마지막 페이지 61