본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.28
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
ICA
by recently order
by view order
Seeing Inside Cells with Fiber Optics
Professor Jiho Park’s research team was successful in receiving minute optical signals from inside the cell using optical nano fibers. Through the invention of this technology, we can now look inside cells in high resolution without the use of equipment such as endoscopes that damage cells. We will be able to study the biological phenomena within cells, and thus cure diseases more effectively. Recently, ultra high resolution microscopes have been used to analyze incubated cells. However, because of the need for a very complex and large system, it had been impossible to monitor cells in the less transparent areas of the body in real time. The research team created the wire with a semiconductor created with tin oxides to be only 100 nanometers in diameter (1nanometer= 1/1billion meters). The nanowire is connected to the end of the optical fiber, and the light that comes through the optical fiber is transmitted to particular spots in the cell, and the optical signals from the cell are retrieved back from the cell as well Together with this, based on the fact that nanowires do not damage cells, the research team covered the end of the wire with a photo reactive material and entered this into the cell. They were able to check that the material reacted to light and entered the cell when they transmitted light Accordingly, this showed the possibilities of the use of this technology as a method of treatment to effectively transfer the medication into the cells. Prof. Jiho Park stated that “in this research, we only used cells incubated outside the human body, but soon we will use this technology to stimulate and control cells within the body in a minute scale” as well as that “soon, we will be able to study the biological phenomena inside a cell to study diseases and apply this to cure them more effectively”. This research result has been published in the online publication of ‘Nature Nanotechnology’ on December 18. This study was done through the cooperation of various schools. Besides Prof. Jiho Park, Prof. Seungman Yang from the Biochemistry department, and Doctor Chuljoon Huh from KAIST, Prof. Yeonho Choi from Biomedical Science department of Korea University, Professor Peidon Yang and Doctor Ruoxue Yan from UC Berkeley’s chemistry department, and Luke Lee from UC Berkeley’s bioengineering department participated in the project.
2012.01.31
View 10805
'Scientist-Engineer of the Month' for December: Professor Choi Joon Ho
Professor Choi Joon Ho (department of Biological Sciences) was made ‘Scientist-Engineer of December’ for his discovery of new gene (twenty-four) that helps biorhythm and proving that this gene helps control biorhythm. Professor Choi published 100 dissertations over the past 25 years and made significant advancements in the field of molecular virus and neurobiology. In 1995 Professor Choi uncovered the fact that the NS3 protein in C type hepatitis function as RNA helicase thereby opening the path to developing a cure for C type hepatitis; this is an international patent with Chiron corporation. The result was published in Biochemical and Biophysical Research Communications Journal and was the most domestically referred to dissertation in biological sciences in 1999. In addition Professor Choi published in Nature magazine in 1999, a dissertation that uncovered the fact that the DNA of papillomar virus has another protein (hSNF5) that direct it apart from ordinary proteins. In 2000~2005 Professor Choi published many dissertations in journals like Immunity, Cancer Research, Molecular and Cellular Biology, Oncogene, Journal of Virology, and etc. Professor Choi screened over 10,000 species of pomace fly mutations and discovered the twenty-four gene that affects the biorhythm of pomace flies. He analyzed this gene further and found a new function that was different from known biorhythm mechanisms. This research allowed a better understanding of biological clock of pomace flies and therefore was another step towards better understanding the control mechanism of human biological clock.
2012.01.31
View 10892
Information Sharing Webzine "You'reKA"
KAIST will be opening “You’reKA” to improve communication between staff members and between KAIST family members. “You’reKA” will primarily deal with school policies, research successes, news of KAIST family members, opinions, and other on, off campus news. “You’reKA” is a shortened form of “You are KAIST” and is a homonym of ‘Eureka’ an expression used for scientific discovery and is supposed to instill pride as KAISTians. The webzine is set to be opened in January of this year and will showcase 5 menus: “We Ask KAIST the Way”, “KAIST Report”, “Issue Briefing”, “Opinion” and “You”. “We Ask KAIST the Way” introduces messages from the President and Vice President of KAIST and is a corner where honest opinions regarding the university’s vision and leadership are shared. It will be run as a Q&A corner that includes major publications and comments along with interviews, external experts, and staff members. Under the “KAIST Report” menu, there will be ‘KAIST Today’ section where up to date research and experiment successes are posted, and a ‘KAIST Yard’ where various event information and news of KAIST members are shared. “Issue Briefing” will introduce an overall assessment of various university management policies and issues and provide a complete scan of information. “Opinion” will allow visitors to the webzine to read up on various perspectives and comments from Professors and experts on Science and Technology. The “You” menu will introduce various stories, activities, and expertise of KAIST staff members and their families. “You’reKA” is expected to bring the campus closer together and provide an agora of sorts where ideas can be exchanged and bring down the differences between each member of KAIST.
2012.01.31
View 8385
Bio Pharmaceutical Business Center: Now Open
The Signboard Hanging Ceremony for the Bio Pharmaceutical Business Center for the Integrated Research for the field of Bio Pharmaceutics. 150 representatives from various bio pharmaceutics related businesses and institutes were present for this ceremony. The Ministry of Education, Science and Technology placed the Molecular Process research team, Personalized Drug Delivery Medium research team, and the newly formed Cancer Cell Detection using Blood research team at the Bio Pharmaceutical Business Center at KAIST.
2012.01.31
View 10217
Ten Breakthroughs of the Year 2011 by Science
Porous Zeolite Crytals Science, an internationally renowned scientific journal based in the US, has recently released a special issue of “Breakthrough of the Year, 2011,” dated December 23, 2011. In the issue, the journal introduces ten most important research breakthroughs made this year, and Professor Ryong Ryoo, Department of Chemistry at KAIST, was one of the scientists behind such notable advancements in 2011. Professor Ryoo has been highly regarded internationally for his research on the development of synthetic version of zeolites, a family of porous minerals that is widely used for products such as laundry detergents, cat litters, etc. Below is the article from Science, stating the zeolite research: For Science’s “Breakthrough of the Year, 2011”, please go to: http://www.sciencemag.org/site/special/btoy2011/ [Excerpt from the December 23, 2011 Issue of Science] Industrial Molecules, Tailor-Made If you ever doubt that chemistry is still a creative endeavor, just look at zeolites. This family of porous minerals was first discovered in 1756. They"re formed from different arrangements of aluminum, silicon, and oxygen atoms that crystallize into holey structures pocked with a perfect arrangement of pores. Over the past 250 years, 40 natural zeolites have been discovered, and chemists have chipped in roughly 150 more synthetic versions. View larger version: In this page In a new window Assembly required. Porous zeolite crystals are widely used as filters and catalysts. This year, researchers found new ways to tailor the size of their pores and create thinner, cheaper membranes. CREDIT: K. VAROON ET AL., SCIENCE334, 6052 (7 OCTOBER 2001) This abundance isn"t just for show. Three million tons of zeolites are produced every year for use in laundry detergents, cat litter, and many other products. But zeolites really strut their stuff in two uses: as catalysts and molecular sieves. Oil refineries use zeolite catalysts to break down long hydrocarbon chains in oil into the shorter, volatile hydrocarbons in gasoline. And the minerals" small, regularly arranged pores make them ideal filters for purifying everything from the air on spaceships to the contaminated water around the nuclear reactors destroyed earlier this year in Fukushima, Japan. Zeolites have their limitations, though. Their pores are almost universally tiny, making it tough to use them as catalysts for large molecules. And they"re difficult to form into ultrathin membranes, which researchers would like to do to enable cheaper separations. But progress by numerous teams on zeolite synthesis this year gave this “mature” area of chemistry new life. Researchers in South Korea crafted a family of zeolites in which the usual network of small pores is surrounded by walls holed with larger voids. That combination of large and small pores should lead to catalysts for numerous large organic molecules. Labs in Spain and China produced related large- and small-pore zeolites by using a combination of inorganic and organic materials to guide the structures as they formed. Meanwhile, researchers in France and Germany discovered that, by carefully controlling growth conditions, they could form a large-pore zeolite without the need for the expensive organic compounds typically used to guide their architecture as they grow. The advance opens the way for cheaper catalysts. In yet another lab, researchers in Minnesota came up with a new route for making ultrathin zeolite membranes, which are likely to be useful as a wide variety of chemically selective filters. This surge of molecular wizardry provides a vivid reminder that the creativity of chemists keeps their field ever young. Related References and Web Sites
2011.12.23
View 13561
Honorary Doctorate Presented to President of the Royal Swedish Academy of Sciences
KAIST presented to Dr. Svante Lindqvist, President of the Royal Swedish Academy of Sciences and Marshal of the Realm to the Swedish Royal Court, an honorary doctorate in science and technology on the 21st of November at Fusion Hall, KI Building. Dr. Lindqvist, a pioneer in the field of history of science and technology, showed how science and technology have affected the development of human civilization. His work in explaining the relationship between science and history made it easier to the public to understand the importance of science in our society, upon which he was conferred the honorary doctorate. Director Lindqvist obtained a doctorate from the Uppsala University of Sweden in 1984 with the dissertation, “Introduction of Steam Locomotive in 18th century Sweden.” This single dissertation won him three awards, which has been regarded even today as an introductory reading text to readers in the field of science history. Dr. Lindqvist established the Department of History of Science and Technology in Sweden Royal Institute of Technology in 1989 and was the department chair for nine years until 1997. He then became the founding director of the Nobel Museum from 1998 to 2009 and developed the museum from a mere display venue of Nobel’s legacy to a multifunctional research oriented institute that supports and holds various outreach activities such as seminars and public lectures. From the visit of Dr. Lindqvist to KAIST, students had a wonderful opportunity to engage with an internationally renowned scholar and, once more, to remind the university"s vision and mission, whereby they make contributions to the development of science, and ultimately, to the advancement of humanity.
2011.12.13
View 11452
The Hindu, "Use of microalgae helps in controlling pollution," December 8, 2011
The Hindu, an Indian newspaper, reported on December 8, 2011 a research work by Professor Ji-Won Yang from the Department of Chemical and Biomolecular Engineering. For the news article, please go to the link at http://www.thehindu.com/sci-tech/energy-and-environment/article2695634.ece?homepage=true. The Hindu, December 8, 2011 Use of microalgae helps in controlling pollution By N. Gopal Raj
2011.12.12
View 10371
New York Times, "First, Catch Your Faculty-A Recipe for Excellence"
The World Bank has recently published a new book entitled “The Road to Academic Excellence: The Making of World Class Research Universities.” The report (book) examined the recent experience of 11 universities in 9 countries (for Korea, it sampled Pohang University of Science and Technology, established in 1986) that have undergone transformations in order to become world-class universities. The book has received a wide coverage from the media all around the world since its publication in late September, among others, the latest article by New York Times (NYT), dated October 16, 2011. The gist of the book, i.e., what elements are required should a research university to become “truly prestigious” in the global scene, is well introduced by the NYT article, and here’s the link: New York Times, “First, Catch Your Faculty-A Recipe for Excellence” http://www.nytimes.com/2011/10/17/world/americas/17iht-educLede17.html
2011.10.17
View 12490
Fusion performing arts, called space musical, 'NARO' performed at KAIST
In commemoration of the 6th anniversary of the establishment of the Graduate School of Cultural Technology, KAIST organized an English musical show on space at the Auditorium on the 29th and 30th of September. The name of the musical was NARO. The musical was funded by the ‘NaDa Center’ operated by KAIST’s Graduate School of Cultural Technology. The musical was created with participation from adolescents, which told a tale about a genius boy Naro’s journey in space. The musical was composed of two parts, and the basic storyline was about Naro who conducts research based on space, and his friends went on a time travel to the constellation Scorpios; more specifically, it was a Korean traditional children’s story about a brother and sister who became the sun and the moon. Naro and his friends prevent the plot of Tyran, a villan, who plans on destroying the space and Earth by inducing a red giant star, Antares. In preparation for the musical, NaDa Center selected 14 students ranging from elementary to high school students during March of 2011. The selected students met every Saturday and Sunday from March to September for practice; a gargantuan commitment. The theme of the musical is space, the future, and hope, and it does not utilize any stage settings. Instead, it attempts the incorporation of high technology into the stage by using interactive video, laser art, and specially built props. In addition, the entire process from script to performance and advertisement was utilized as an education model to suggest a good fusion between science and technology and cultural arts. The musical ‘NARO’ is a collective effort. Professor Won Kwan Yeon who pioneered the field of Cultural Technology directed the musical, Professor Koo Bon Chul was in charge of the script and music composition, acting was charged to Lee Min Ho, choreography was charged to Han Eun Kyung, astrological reference was charged to Park Seok Jae among other students in the Graduate School of Cultural Technology. Members of the KAIST Acting Club ‘Lee Bak Teo’, Jeong Soo Han, Son Sharon and graduate of Chung Nam National University with vocal music major Yang Su Ji also made appearances. The Space Musical ‘NARO’ was funded by the Korea Astronomy and Space Science Institute, Korea Aerospace Research Institute, and LG School of Multi Culture.
2011.10.10
View 11922
KAIST rated 1st consistently for four years running, according to the Korean universities ranking compiled by Joongang Daily
KAIST scored 293 points out of a possible 350 points in the 2011 Joongag Daily survey on the assessment of Korean universities and solidified its position as the nation’s best university by being ranked “number one” for four consecutive years. POSTECH, Seoul National University, Yonsei University, Korea University, and SungKyunKwan University followed. The Joongang Daily Korean Universities Assessment began in 1994, which covers all four-year universities. KAIST has been rated 1st in Korea a total of nine times, and it is KAIST’s second time being rated 1st four years in a row. KAIST was assessed especially highly in quality of education, finances, and professor research categories. Joongang Daily assessed a total of 100 universities (compared to 93 of last year). The maximum number of points is 350 points comprising of quality of education (110 points), globalization (60 points), professor research (110 points), and public reputation/interaction with public (70 points).
2011.10.10
View 9970
A frugal couple donates life savings of '35billion Korean Won' to KAIST.
Chairman Kim Byoung Ho and Mrs. Kim Sang Yeol have been the center of attention with various news articles and columns detailing their generous donation of real estate to KAIST, which amounted to 35billion Korean Won in value in total. Korean Broadcasting System (KBS) broadcasted a story on Chairman Byoung Ho and Mrs. Kim Sang Yeol on the 22nd of September. The broadcast link: http://news.kbs.co.kr/society/2011/09/22/2360159.html Yahoo News also posted their donation on September 21, 2011. News link: http://ph.news.yahoo.com/frugal-woman-donates-4-3m-science-041003479.html
2011.09.27
View 10201
Review of organophosphonate nerve agent remediation and sensing chemistry
Professor David Churchill, Dept. of Chemistry, KAIST Scientists in Daejeon, South Korea and Lexington, Kentucky (USA) have recently published a review on the subject of nerve agent remediation and probing chemistry (Chemical Reviews, DOI:10.1021/cr100193y). This article endeavored to pursue organophosphonate nerve agent chemistry deeply and comprehensively and to reflect that decontamination / sensing and nerve agents / pesticides are quite inextricable: when one tries to degrade nerve agents one also needs to detect what components are still present “downstream,” etc. Nerve agents and many pesticides also share a common generalized organophosphate / -phosphonate structure. Also, the use of simulant molecules (mimics) and a consideration of the closely related organophosphonate pesticides were also treated comprehensively in the Review. The authors reached back into the literature when developing some sections to make important connections to the contemporary topics of interest. The review also includes industrial insights. Kibong Kim, Olga G. Tsay and David G. Churchill of the Department of Chemistry at KAIST and David A. Atwood of the Department of Chemistry of the University of Kentucky endeavored to "make a variety of connections in research strategies and (sub-) fields to present what is still possible, fruitful, practical, and necessary and to facilitate a current comprehensive molecular level understanding of organophosphonate degradation and sensing," Churchill says. The authors feel that for the time being, researchers in varying research areas “can use this manuscript effectively when considering future research directions.”
2011.09.19
View 9871
<<
첫번째페이지
<
이전 페이지
31
32
33
34
35
36
37
38
39
40
>
다음 페이지
>>
마지막 페이지 54