본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
application
by recently order
by view order
Professor Rim Presents at IAEA Workshop in Vienna
Professor Chun-Taek Rim of the Department of Nuclear and Quantum Engineering at KAIST recently attended the International Atomic Energy Agency (IAEA)’s workshop on the Application of Wireless Technologies in Nuclear Power Plant Instrumentation and Control System. It took place on March 30-April 2, 2015, in Vienna, Austria. Representing Korea, Professor Rim gave a talk entitled “Highly Reliable Wireless Power and Communications under Severe Accident of Nuclear Power Plants (NPPs).” About 20 industry experts from 12 countries such as AREVA (France), Westinghouse (US), Oak Ridge National Laboratory (US), Hitachi (Japan), and ENEA (Italy) joined the meeting. The IAEA hosted the workshop to explore the application of wireless technology for the operation and management of NPPs. It formed a committee consisting of eminent professionals worldwide in NPP instrumentation and control systems, communications, and nuclear power to examine this issue in-depth and to conduct various research projects for the next three years. In particular, the committee will concentrate its research on improving the reliability and safety of using wireless technology, not only in the normal operation of nuclear plants but also in extreme conditions such as the Fukushima Daiichi nuclear accident. The complementation, economic feasibility, and standardization of NPPs when applying wireless technology will be also discussed. Professor Rim currently leads the Nuclear Power Electronics and Robotics Lab at KAIST (http://tesla.kaist.ac.kr/index_eng.php?lag=eng). Picture 1: Professors Rim presents his topic at the IAEA Workshop in Vienna. Picture 2: The IAEA Workshop Participants
2015.04.07
View 11293
Nanoparticle Cluster Manufacturing Technique Using DNA Binding Protein Developed
Professor Hak-Sung Kim of the Department of Biological Sciences at KAIST and Yiseul Ryu, a doctoral candidate, used the Zinc Finger protein that specifically binds to target DNA sequence to develop a new manufacturing technique for size-controllable magnetic Nanoparticle Clusters (NPCs). Their research results were published in Angewandte Chemie International Edition online on 25 November 2014. NPCs are structures consisting of magnetic nanoparticles, gold nanoparticles, and quantum dots, each of which are smaller than 100 nm (10-9m). NPCs have a distinctive property of collectivity not seen in single nanoparticles. Specifically NPCS differ in physical and optical properties such as Plasmon coupling absorbance, energy transfers between particles, electron transfers, and conductivity. Therefore, NPCs can be employed in biological and medical research as well as the development of nanoelectric and nanoplasmon devices. To make use of these novel properties, the size and the composition of the cluster must be exquisitely controlled. However, previous techniques relied on chemical binding which required complex steps, making it difficult to control the size and composition of NPCs. Professor Kim’s team used Zinc Finger, a DNA binding protein, to develop a NPCs manufacturing technique to create clusters of the desired size easily. The Zinc Finger protein contains a zinc ion and specifically recognizes DNA sequence upon binding, which allows the exquisite control of the size and the cluster composition. The technique is also bio-friendly. Professor Kim’s team created linear structure of different sizes of NPCs using Zinc Finger proteins and three DNA sequences of different lengths. The NPCs they produced confirmed their ability to control the size and structure of the cluster by using different DNA lengths. The NPCs showed tripled T2 relaxation rates compared to the existing MRI contrast media (Feridex) and effectively transported to targeted cells. The research findings show the potential use of NPCs in biological and medical fields such as MRI contrast media, fluorescence imaging, and drug transport. The research used the specific binding property of protein and DNA to develop a new method to create an inorganic nanoparticle’s supramolecular assembly. The technique can be used and applied extensively in other nanoparticles for future research in diagnosis, imaging, and drug and gene delivery. Figure 1. A Mimetic Diagram of NPCs Manufacturing Technique Using DNA Binding Protein Zinc Finger Figure 2. Transmission Electron Microscopy Images showing different sizes of NPCs depending on the length of the DNA
2014.12.04
View 11896
IAMCOMPANY, an educational technology startup created by a KAIST student, featured online in EdSurge
EdSurge is a U.S.-based online news site focused on education and technology innovation, which published an article, dated August 12, 2014, on IAMCOMPANY (http://iamcompany.net), a startup created by a KAIST student, Inmo (Ryan) Chung. The article introduced one of the company’s most popular and free smartphone applications called “IAMSCHOOL” that “funnels school announcements and class notices to parents’ smartphones using a format similar to Twitter and Google+.” For more about IAMCOMPANY, please visit the link below: EdSurge, August 12, 2014 “South Korea’s Biggest Educational Information App Plans Pan-Asian Expansion” https://www.edsurge.com/n/2014-08-12-south-korea-s-biggest-educational-information-app-plans-pan-asian-expansion
2014.08.19
View 7711
A KAIST research team developed in vivo flexible large scale integrated circuits
Daejeon, Republic of Korea, May 6th, 2013–-A team led by Professor Keon Jae Lee from the Department of Materials Science and Engineering at KAIST has developed in vivo silicon-based flexible large scale integrated circuits (LSI) for bio-medical wireless communication. Silicon-based semiconductors have played significant roles in signal processing, nerve stimulation, memory storage, and wireless communication in implantable electronics. However, the rigid and bulky LSI chips have limited uses in in vivo devices due to incongruent contact with the curvilinear surfaces of human organs. Especially, artificial retinas recently approved by the Food and Drug Administration (refer to the press release of FDA"s artificial retina approval) require extremely flexible and slim LSI to incorporate it within the cramped area of the human eye. Although several research teams have fabricated flexible integrated circuits (ICs, tens of interconnected transistors) on plastics, their inaccurate nano-scale alignment on plastics has restricted the demonstration of flexible nano-transistors and their large scale interconnection for in vivo LSI applications such as main process unit (MPU), high density memory and wireless communication. Professor Lee"s team previously demonstrated fully functional flexible memory using ultrathin silicon membranes (Nano Letters, Flexible Memristive Memory Array on Plastic Substrates), however, its integration level and transistor size (over micron scale) have limited functional applications for flexible consumer electronics. Professor Keon Jae Lee"s team fabricated radio frequency integrated circuits (RFICs) interconnected with thousand nano-transistors on silicon wafer by state-of-the-art CMOS process, and then they removed the entire bottom substrate except top 100 nm active circuit layer by wet chemical etching. The flexible RF switches for wireless communication were monolithically encapsulated with biocompatible liquid crystal polymers (LCPs) for in vivo bio-medical applications. Finally, they implanted the LCP encapsulated RFICs into live rats to demonstrate the stable operation of flexible devices under in vivo circumstances. Professor Lee said, "This work could provide an approach to flexible LSI for an ideal artificial retina system and other bio-medical devices. Moreover, the result represents an exciting technology with the strong potential to realize fully flexible consumer electronics such as application processor (AP) for mobile operating system, high-capacity memory, and wireless communication in the near future." This result was published in the May online issue of the American Chemical Society"s journal, ACS Nano (In vivo Flexible RFICs Monolithically Encapsulated with LCP). They are currently engaged in commercializing efforts of roll-to-roll printing of flexible LSI on large area plastic substrates. Movie at Youtube Link: Fabrication process for flexible LSI for flexible display, wearable computer and artificial retina for in vivo biomedical application http://www.youtube.com/watch?v=5PpbM7m2PPs&feature=youtu.be Applications of in Vivo Flexible Large Scale Integrated Circuits Top: In vivo flexible large scale integrated circuits (LSI); Bottom: Schematic of roll-to-roll printing of flexible LSI on large area plastics.
2013.06.09
View 12360
KAIST Holds Robot Taekwondo Competition Recognized by the World Taekwondo Federation
KAIST will host the 12th Intelligent System-on-Chip (SoC) Robot War in October 2013, a robot competition. The event will have two entries: robot Taekwondo contest and HURO competition. The World Taekwondo Federation has decided to offer an honorary Taekwondo degree to the winner of SoC Taekwondo Robot competition. The Intelligent SoC Robot War was created in 2002 by KAIST’s Professor Hoi-Jun Yoo in the Department of Electrical Engineering. For SoC Taekwondo Robot event, two robots compete in the form of Taekwondo, traditional Korean martial arts. The robots competing in this event have a camera and semiconductor chips on board, and therefore they have the brain-like functions to identify an object and control movements on their own. The robots have 21 joints with humanoid robot technology on their body for the techniques needed to compete in a typical Taekwondo match. They employ moves such as front kicks, side kicks, and upper punches. In particular, KAIST’s System Design Innovation & Application Research Center, the organizer of this competition, has operated a team to demonstrate robot Taekwondo since last year with the purpose of displaying the basic movements of Taekwondo. “Robots received attention as the source of growth in the near future. We have been developing robotics technology, and as part of our endeavor, preparing the Taekwondo demonstration team since 2012 to exhibit Korea’s robot technology and introduce our traditional martial arts,” said Professor Hoi-Jun Yoo. “We will continue to develop various capabilities for Taekwondo robots in cooperation with the World Taekwondo Federation.” In HURO-Competition, robots compete for crossing the finishing line first by completing various missions, such as putting in a golf ball or overcoming obstacles while avoiding unexpected accidents. The winning team is awarded with a Presidential Award of Korea. The 12th Intelligent SoC Robot War Competition is open to all graduate or undergraduate students. For details, visit the homepage at http://www.socrobotwar.org/.
2013.05.06
View 9952
Professor Song Joon Hwa develops new Location Tracking Application
Professor Song Joon Hwa developed a location tracking application that alerts the teacher when students on field trips stray too far from the group via a smartphone and a headset. Conventional Location Tracking Applications utilize GPS systems and as a consequence does not function indoors where the satellite signal is nonexistent. However Professor Song’s method is unique in the fact that it utilizes radio waves which allows signal transfer both indoors and outdoors. In addition different alerts are given off in difference locations and therefore the technology can be applied in finding the effectiveness of the field trip and the social behaviors of students.
2012.09.11
View 7562
KAIST placed the 5th in top 50 global universities for international patent applications
New York Times released an article, dated March 19, 2012, on the statistics of international patent applications filed by global universities during 2011, and with 103 applications published, KAIST was listed the fifth among the top 50 universities, right behind four US universities: University of California (277), the Massachusetts Institute of Technology (179), the University of Texas System (127), and Johns Hopkins University (111). A total of seven Korean universities including KAIST made the top 50 list. For the article, please check the link below: New York Times, March 19, 2012 “U.S. Universities Retain Lead in Patent Applications” By Christopher F. Schuetze http://www.nytimes.com/2012/03/19/world/asia/us-universities-retain-lead-in-patent-applications.html In addition, for the press release by the World Intellectual Property Organization, the UN agency responsible for the Patent Cooperation Treaty, on international patent filings in 2011, please click the following link: “International Patent Filings Set new Record in 2011” http://www.wipo.int/pressroom/en/articles/2012/article_0001.html
2012.03.21
View 9058
Professor Choi Han Lim receives Automatica Applications Paper Price
Professor Choi Han Lim of the Department of Aerospace received ‘Automatica Applications Paper Prize’ for the first time ever for a Korean. Professor Choi published a paper in the Automatica magazine with the topic of ‘Continuous Trajectory Planning of Mobile Sensors for Informative Forecasting’. Professor Choi dealt with most efficient measuring methods for mobile sensor platforms thereby improving the performance of anticipating environmental changes and proposed key theories for problem solving and also an efficient algorithm. The research was conducted in cooperation with MIT Department of Aerospace Professor Jonathan How with the support of the National Science Foundation. Automatica Journal published by the International Federation of Automatic Control and has been awarding the Automatica Paper Prize every three years.
2011.05.31
View 7780
Professor Hwang Kyu Young Receives Outstanding Contributions Award from DASFAA
Professor Hwang Kyu Young received the 2011 Outstanding Contributions Award from the International Conference on Database Systems for Advanced Applications (DASFAA). Professor Hwang was the Chairman, Vice Chairman, Executive, etc. of the DASFAA Steering Committee for the past 12 years and has been leading the development in the field of database in the Asia/Pacific Region. He was also the editor in chief of The VLDB Journal which is the leading magazine in the field of database and the member of ACM SIGMOD Jim Gray Dissertation Award Committee, VLDB 10-year Best Paper Award Committee, and IEEE ICDE Influential Paper Awards Committee. He receives the Outstanding Contributions Award for ensuring high standards in world database research.
2011.05.31
View 8609
Success in differentiating Functional Vascular Progenitor Cells (VPC)
KAIST’s Professor Han Yong Man successfully differentiated vascular progenitor cells from human embryonic stem cells and reversed differentiated stem cells. The research went beyond the current method of synthesis of embryonic body or mice cell ball culture and used the careful alteration of signal transmission system of the human embryonic stem cells to differentiate the formation of vascular progenitor cells. The team controlled the MEK/ERK and BMP signal transmission system that serves an important role in the self replication of human embryonic stem cells and successfully differentiated 20% of the cells experimented on to vascular progenitor cells. The vascular progenitor cells produced with such a method successfully differentiated into cells forming the endodermis of the blood vessel, vascular smooth muscle cells and hematopoietic cells in an environment outside of the human body and also successfully differentiated into blood vessels in nude mice. In addition, the vascular progenitor cell derived from human embryonic cells successfully formed blood vessels or secreted vascular growth factors and increased the blood flow and the necrosis of blood vessels when injected into an animal with limb ischemic illness. The research was funded by the Ministry of Education, Science and Technology, 21st Century Frontier Research and Development Institution’s Cell Application Research Department and Professor Ko Kyu Young (KAIST), Professor Choi Chul Hee (KAIST), Professor Jeong Hyung Min (Cha Medical School) and Doctor Jo Lee Sook (Researcher in Korea Bio Engineering Institute) participated in it. The results of the research was published as the cover paper of the September edition of “Blood (IF:10.55)”, the American Blood Journal and has been patented domestically and has finished registration of foreign PCT. The results of the experiment opened the possibility of providing a patient specific cure using stem cells in the field of blood vessel illness.
2011.01.18
View 12330
KAIST Wins Official Membership of ERCIS
The Center for Software Policy Study of KAIST has recently become the 20th official member of the European Research Center for Information Systems (ERCIS) by signing an agreement with the organization, university authorities said on Thursday (Oct. 22). The ERCIS is a network of scientists who conduct cooperative research in the field of integrated information systems development and organizational design. The Center undertakes interdisciplinary research with the participation of computer scientists, business management experts and law scholars. KAIST will seek to activate exchange of professors, research fellows and graduate students with ERCIS members, as well as implementing credit exchange and dual degree programs. ERCIS, was first organized by the German state of North Rhine-Westfahlia, is currently managed by the University of Muenster, a global leader in the field of information systems and business administration. Joining the ERCIS are one university each from New Zealand, the Netherlands, Germany, Russia, Liechtenstein, the United States, Switzerland, Spain, Slovenia, Ireland, Britain, Austria, Italy, the Czech Republic, Poland, France, Finland and Australia. KAIST"s Center for Software Policy Study is currently preparing for the establishment of a support system for developers of the mobile application software as part of the EUREKA project. Korea is playing a leading role in this project on the strength of its competitiveness in the mobile phone industry. EUREKA is a pan-European intergovernmental network for market-oriented, industrial R&D aimed at enhancing European competitiveness through its support to businesses, research centers and universities who carry out pan-European projects to develop innovative products, processes and services.
2009.10.22
View 12131
Prof. Cho Elected Editor-in-Chief of Systems Biology
Prof. Kwang-Hyun Cho of Department of Bio and Brain Engineering at KAIST has been recently elected editor-in-chief of the Systems Biology, an international journal published by the London-based Institution of Engineering and Technology (IET), the university authorities said on Wednesday (Sept. 23) By the year 2012, Cho will oversee the editorial process of the journal covering intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. IET, one of the world"s leading professional societies for the engineering and technology community, has a worldwide membership of more than 150,000. Prof. Cho"s research interests cover the areas of systems science with bio-medical applications including systems biology and bio-inspired engineering based on molecular systems biology. He is currently an editorial board member of Systems and Synthetic Biology (Springer, Netherlands, from 2006), BMC Systems Biology (BMC, London, U.K., from 2007), Gene Regulation and Systems Biology (Libertas Academica, New Zealand, from 2007), and Bulletin of Mathematical Biology (Springer, New York, from 2008), and an editorial advisory board member of Molecular BioSystems (The Royal Society of Chemistry, U.K.).
2009.09.24
View 14612
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3