본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
ATM
by recently order
by view order
Therapy developed to induce Angiogenesis of Retina
- Junyeop Lee, Graduate School of Medical Sciences and Engineering - Research results expected to be applied for treatment of diabetic retinopathy A major clue to treatment of retinovascular disease, which causes blindness, has been found. The key to protection of the retinal nerve is the angiogenic protein that promotes healthy retinal vessel growth around the retina, which usually does not receive blood supply readily. This research offers a beginning to the possible improvement of therapy for diabetic retinopathy1 and retinopathy of prematurity2. Also important to the research is the fact that the ophthalmology specialist researcher, currently undergoing professional training, provided the results. KAIST Graduate School of Medical Sciences and Engineering’s Junyeop Lee is the opthalmology specialist, who carried out the research under supervision by academic advisers Gyuyeong Go and Wookjun Yoo. The Ministry of Science, ICT and Future Planning as well as the National Research Foundation of Korea have funded his research. The research results have been published as a cover paper on ‘Science Translational Medicine’ on 18th August. This journal is a sister publication of Science, which is prestigious in the field of translational medicine that ties the basic science with clinical medicine. (Thesis title: Angiopoietin-1 Guides Directional Angiogenesis Through Integrin αvβ5 Signaling for Recovery of Ischemic Retinopathy) The traditional treatment of diabetic retinopathy includes laser photocoagulation to destroy the retinal tissues or antibody therapeutics, which prevents vessel proliferation and blood leaking. The advantage of antibody therapeutics3 is that it retains the retinal nerves, however, it is not the fundamental solution but merely a temporary one, which requires repeated treatments. The research team identified that Angiopoietin-14 protein, known as essential for growth and stabilization of vessels, also plays an important role in retinal vessel growth. The protein protects the retinal nerves, as well as provides improvement for retinal ischemia5 that is the root cause of vision loss due to retinal hemorrhages. It is expected to become a key to finding fundamental treatment method – by providing sufficient blood supply to the retina, thereby preserving the retinal nerve functions. The results show that administration of Angiopoietin-1 to retinopathy mouse model promotes growth of healthy vessel growth, further preventing abnormal vessel growth, retinal hemorrhage and vision loss due to retinal ischemia. Junyeop Lee said, “This research has identified that Angiopoietin-1 is an important factor in retinal vessel generation and stabilization. The paradigm will shift from traditional treatment method, which prevents vessel growth, to a new method that generates healthy vessels and strengthens vessel functions.” 1 Diabetic retinopathy: This retinovascular disease is a diabetic complication caused by insufficient blood supply. It is the major causes of blindness in adults. 2 Retinopathy of prematurity: The retinal vascular disease that occurs in premature infants with incomplete retinal vascular development. It is also the most common cause of blindness in children. 3 Antibody Therapeutics: Antibody developed to selectively inhibit abnormal blood vessel growth and leakage. Typical antibody therapeutics is Avastin and Lucentis, which hinder vascular endothelial growth factor (VEGF). 4 Angiopoietin-1: A critical growth factor that induces the production of healthy blood vessels and maintains the stability of the created vessel. 5 Retinal ischemia: State of ailment where retinal tissue blood supply is not sufficient. Figure 1. Retinopathy mouse models show that, in comparison to the control group, the VEGF-Trap treatment and Angiopoietin-1 (Ang1) treatment groups significantly suppresses the pathological vascular proliferation. In addition, the Ang 1 group show vessel growth toward the central avascular area (region of retinal ischemia), which is not observed in VEGF-Trap treatment. Figure 2. Reduced retinal ischemia, retinal bleeding and blood vessel normalization by Angiopoietin-1. Retinal ischemic region (arrow) and retinal bleeding significantly reduced in the Angiopoietin-1 (Ang1) treatment model in comparison to control group (left). The newly generated vessels in Ang 1 model are structurally supported by perivascular cells as normal retinal vessels do (right).
2013.10.12
View 11782
Complex responsible for protein breakdown in cells identified using Bio TEM
Professor Ho-Min Kim - High resolution 3D structure analysis success using Bio Transmission Electron Microscopy (TEM), a giant step towards new anticancer treatment development - Published in Nature on May 5th Using TEM to observe protein molecules and analysing its high resolution 3D structure is now possible. KAIST Biomedical Science and Engineering Department’s Professor Ho-Min Kim has identified the high resolution structure of proteasome complexes, which is responsible for protein breakdown in cells, using Bio TEM. This research has been published on the world"s most prestigious journal, Nature, online on May 5th. Our body controls many cellular processes through production and degradation of proteins to maintain homeostasis. A proteasome complex acts as a garbage disposal system and degrades cellular proteins when needed for regulation, which is one of the central roles of the body. However, a mutation in proteasome complex leads to diseases such as cancer, degenerative brain diseases, and autoimmune diseases. Currently, the anticancer drug Velcade is used to decrease proteasome function to treat Multiple Myeloma, a form of blood cancer. Research concerning proteasome complexes for more effective anticancer drugs and treatments with fewer side effects has been taking place for more than 20 years. There have been many difficulties in understanding proteasome function through 3D structure analysis since a proteasome complex, consisting of around 30 different proteins, has a great size and complexity. The research team used Bio TEM instead of conventionally used protein crystallography technique. The protein sample was inserted into Bio TEM, hundreds of photographs were taken from various angles, and then a high–performance computer was used to analyse its structure. Bio TEM requires a smaller sample and can analyse the complexes of great size of proteins. Professor Ho-Min Kim said, “Identifying proteasome complex assembly process and 3D structure will increase our understanding of cellular protein degradation process and hence assist in new drug development using this knowledge.” He added, “High resolution protein structure analysis using Bio TEM, used for the first time in Korea, will enable us to observe structure analysis of large protein complexes that were difficult to approach using protein crystallography.” Professor Kim continued, “If protein crystallography technology and Bio TEM could be used together to complement one another, it would bring a great synergetic effect to protein complex 3D structure analysis research in the future.” Professor Ho-Min Kim has conducted this research since his post-doctorate at the University of California, San Francisco, under the advice of Professor Yifan Cheng; in co-operation with Harvard University and Colorado University. Figure 1: A picture taken by Bio TEM of open state protein sample (proteasome complex) Figure 2: Bio TEM image analysis showing protein 3D structure
2013.05.25
View 11172
South Korean scientists use laser to inject drugs into brain by Bernama.com, May 26, 2011
Bernama.com, the Malaysian national news agency, reported on the recent development by a KAIST research team of a safe and cheap treatment method for various neurological diseases. For details, please follow the link: http://www.bernama.com/bernama/v5/newsworld.php?id=589195
2011.05.31
View 10249
Industrial Design Senior Wins Top Award at International Forum Design
Sung-Joon Kim, a senior at the Department of Industrial Design, KAIST, has won the highest award at the International Forum Design held in Hanover, Germany, university sources said on Monday (April 13). At the design exhibition held in February under the theme of "life, live, work," Kim presented "Rescue Stick," a portable life saving equipment and "Recovery Arm Sling," a medical treatment device, in cooperation with three students from other Korean universities. Both entries were included among the 15 works selected as the top designs. The design competition has been organized by iF International Forum Design, known as one of the world"s three leading design exhibitions. Kim, leader of the team, received the prize at the awarding ceremony held in Nuremberg on March 24. The award-winning designs were on display at the design fair of the Altenpflege + Propflege, a nursing care exhibition, in the same city on March 24-26.
2009.04.15
View 12346
Six Organizations Join Forces to Induce Projected National Brain Institute to Daejeon
Six major organizations including KAIST have joined forces to help Daejeon City to win the government approval to build the envisioned Korean Brain Institute in Daedeok Research Complex. The six organizations signed a memorandum of understanding on cooperating in establishing the government-funded institute built within the Daedeok Research Complex in the city of Daejeon, at KAIST on Jan. 14. The six organizations are KAIST, the Daejeon City Government, Korea Research Institute of Bioscience and Biotechnology, Korea Research Institute of Standard and Science, Asan Medical Center, and SK Corp., a pioneer in effective therapeutic invention for serious brain disorders. The partnership of the six organizations is expected to bring a broad-based cooperation opportunities and create a massive synergy effect in the brain science researches and the development of new therapeutic treatment for brain disorders by combining their resources and infrastructures. The six organizations have also built an international research network with such globally-renowned brain research institutions as RIKEN, a large natural sciences research institute in Japan, Max Plank Institute in Germany, Federal Institute of Technology, Lausanne, in Switzerland and Brain Research Institute of University of Queensland in Australia. The research network is under the support and guidance of Dennis Choi, a prominent neuroscientist who once served as the President of the Society for Neuroscience and is currently a professor in the Departments of Neurology and biology at Emory University. The tentatively titled Korea Brain Institute is envisioned to help fight brain disorders and create Korea"s new growth engine, as well as lengthening life span, by conducting convergence researches in nero science, brain science and pharmacology. If the consortium of the six organizations wins the government approval to build the proposed institute within the Daedeok complex, the central government and the Daejeon city government are expected to pour a total of 329.7 billion won into the project by 2020.
2009.01.14
View 18113
KAIST tech-clinic center opens
- Consists of total 124 staffs including KAIST professors, experts from state-run institutes in Daedeok Innopolis, etc. - Introduce the patient treatment system of general hospitals and provide the services of diagnosis, treatment, and later management of small and medium-sized venture enterprises A tech-clinic center is opened in KAIST to solve technical problems of enterprises in Daedeok Innopolis. KAIST (President Nam Pyo Suh) and Daedeok Innopolis (President&CEO In Chul Park) held the opening ceremony of ‘Daedeok Innopolis-designated KAIST tech-clinic center’ at the High-tech Venture Hall in KAIST, 5:00 p.m. Monday, August 28. KAIST tech-clinic center consists of total 124 staffs including KAIST professors and researchers, experts from state-run institutes in Daedeok Innopolis, etc. The staffs will take charge of general diagnosis and treatment in the fields of Information Communication, BioTechnologies, Nano-Technologies, Environmental Engineering, Management, Design, and so on. The tech-clinic center, upon the request by small and medium-sized enterprises, will dispatch the staffs in the corresponding field to check the state of the enterprises and provide assistance to solve problems in technology development and researches. The center plans to transfer technologies that enterprises need and solve long-term tasks through joint/ entrusted researches. The center will also perform treatments in the fields of management, law, and accounting of enterprises in association with company founding and management consultation project, which is being promoted by Daedeok Innopolis. Unlike the existing consulting institutes that put a high value on consultation, the center is featured with its distinguished way of running that it will analyze the causes of problems, find fundamental solutions, and perform even later management. An official from KAIST said, “Considering various circumstances, it’s not easy for individual enterprises to find suitable experts in the corresponding fields and request proper solutions to settle their problems. That’s the reason why KAIST has promoted this project. KAIST hopes many enterprises in Daedeok Innopolis based on the cutting-edge technologies will gain substantial assistance from this center.” An official from Daedeok Innopolis said, “In order to provide practical supports, the treatment will be carried out in preliminary/ routine/ expert phases. Also, it is planned to strengthen regular omnidirectional support services for enterprises in association with the internet web call center, etc.”
2006.09.05
View 15586
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2