본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
art
by recently order
by view order
Transparent Antenna for Automobile Developed
A research team led by Prof. Jae-Woo Park of the School of Electrical Engineering & Computer Science, KAIST, developed a transparent antenna for the next-generation automobiles, university authorities said on Monday (Aug. 17). The development was made possible through joint researches with the Hyundai-Kia Automotive Group; Winncom, a car antenna manufacturer; and a group of researchers led by Han-Ki Kim of the Department of Display Materials Engineering at Kyung Hee University in Seoul. The transparent antennas were developed in two kinds -- one for the HSDPA (High-Speed Downlink Packet Access), a new protocol for mobile telephone data transmission, and the other for transmitting and receiving radio wave for emergency call. Using the transparent electrically conductive film formation technology, the transparent antennas are to be mounted on the windshield of a vehicle. "The development of transparent antenna represents a step forward for the advancement of the next-generation automotive electronic technology," said Seong-woo Kim, a senior researcher at the Hyundai-Kia Group.
2009.08.18
View 12343
Lecture Hall Named After Venture Businessman Min-Hwa Lee
A lecture hall in the Alumni Start-Up Building on the KAIST campus was named Min-Hwa Lee Hall in a ceremony on Tuesday to pay tribute to KAIST alumnus Min-Hwa Lee"s contributions to the development of Korean venture business. On hand at the ceremony were Sung-Woo Hong, head of the Small and Medium Business Administration, KAIST President Nam-Pyo Suh, dozens of KAIST alumni representatives, and figures from government research institutes. Lee, who obtained his M.S. (1978) and Ph.D. (1985) in Electrical Engineering from KAIST, established a fund of 10 billion won along with other KAIST alumni in 2001 and donated it for the construction of the Alumni Start-Up Building for aspiring entrepreneurs. To remember his lofty vision, KAIST decided to name a lecture hall after him. As a venture businessman, Lee founded the Madison, Ltd., one of the earliest venture companies in Korea, in 1985. Lee then played a leading role in the creation of the Korea Venture Industry Association in 1995, and in the establishment of KOSDAQ and the enactment of a special law for venture enterprises. KAIST will appoint Lee as an adjunct professor in recognition of his expertise in venture business and commercialization of new inventions. Lee will teach entrepreneurship at the Graduate School of Management and the Institute for Gifted Students, a KAIST affiliate. "Dr. Lee has made a great contribution to the development of Korean venture business. At a time when commercialization of new inventions was at an infant stage, he nurtured technology ventures and built the foundation for the proliferation of technology venture," President Suh said. "We expect that he will strive to open the generation of technologies which will lead the development of Korea in the future and become a mentor of aspiring entrepreneurs," Suh added.
2009.06.30
View 13993
U.S. and Korean Researchers Unveil Newest Research Team Member: Jaemi the Humanoid
- Project aims to enable humanoids to interact with people and their environment June 1, 2009-- A Drexel University-led research team late last week unveiled the newest, most central member of its collaboration with a team of Korean researchers: Jaemi, a humanoid (HUBO). Jaemi HUBO embodies efforts to advance humanoid development and enhance the concept of human-robotic interaction. The project"s goal is to enable humanoids to interact with their environment, and enhancement plans include enabling the humanoid to move over rugged terrain, in unstructured environments and to interact socially with humans and handle objects. The five-year project, funded through the National Science Foundation (NSF) Partnership for International Research and Education (PIRE) program, seeks transformative models to catalyze discovery through international research collaboration and train U.S. students and junior researchers to effectively think and work in global teams. "The field of robotics is among the top 10 technology areas considered engines for economic growth. Korea understands this and is aggressively pursuing robotics. To stay competitive, the U.S. must do the same," said Mark Suskin, acting deputy director of NSF"s Office of International Science and Engineering. "NSF"s PIRE program and this robotics collaboration in particular, enable the U.S. to capitalize on research in other countries and remain competitive." The PIRE research team is composed of researchers at The University of Pennsylvania, Colby College, Bryn Mawr College and Virginia Tech in the United States; and Korea Advanced Institute of Science and Technology (KAIST), Korea University and Seoul National University in Korea. The team obtained a version of KAIST"s HUBO humanoid, which it named Jaemi HUBO and decided to house it at Drexel University. KAIST HUBO lab has become a model of cutting advance humanoid research by relatively small teams working on tight budgets. KAIST excels in humanoid leg and body design, biped gait (walking, running, kicking), balance (modeling and control system design), and hardware integration. U.S. robotics researchers tend to enjoy an edge in locomotion over rugged, unstructured terrain; manipulation/grasping; cognition, perception and human-robot interaction; and vision (image, understanding, navigation). This collaboration of American and Korean researchers will seek to draw on the expertise of each researcher and take Jaemi HUBO to the next level of development--that is, to improve Jaemi"s capabilities to navigate and manipulate objects and interact with people in unstructured environments. Such capabilities demand information technologies like cognition, perception and networking areas. Targeted enhancement features include a capability to move over rugged terrain and in unstructured environments and to handle objects and interact socially with humans. Jaemi HUBO will also educate the American public, particularly young people, about the science of robotics. This education process began at the Please Touch Museum in Philadelphia on May 28, 2009, when Jaemi HUBO was unveiled and introduced to a crowded audience of children and a few adults. Neither male nor female,Jaemi connected with the children, boys and girls alike. Guided by a Drexel University graduate student, Jamei moved, spoke, danced, shook hands and lead the children in a game of Simon Says. Such access to Jaemi HUBO starkly contrasts with that afforded by other high-profile humanoids that are often protected trade secrets, largely inaccessible to the public. Museum curators are pleased to have had Jaemi visit and entertain kids during the weekend. "At the Please Touch Museum, we promote learning through a variety of senses," said J. Willard Whitson,the museum"s vice president for exhibits and education. "A humanoid not only embodies our goal of building layers of knowledge in young people, but Jaemi helps all of us celebrate the playful side of technology." Jaemi HUBO is now at its permanent home at Drexel University, from which travel and guest appearances may be arranged by appointment. Journalists interested in meeting and interviewing Jaemi HUBO and other research team members are encouraged to contact Lisa-Joy Zgorski at lisajoy@nsf.gov. (Press Release of U.S. National Science Foundation)
2009.06.19
View 13724
Six Organizations Join Forces to Induce Projected National Brain Institute to Daejeon
Six major organizations including KAIST have joined forces to help Daejeon City to win the government approval to build the envisioned Korean Brain Institute in Daedeok Research Complex. The six organizations signed a memorandum of understanding on cooperating in establishing the government-funded institute built within the Daedeok Research Complex in the city of Daejeon, at KAIST on Jan. 14. The six organizations are KAIST, the Daejeon City Government, Korea Research Institute of Bioscience and Biotechnology, Korea Research Institute of Standard and Science, Asan Medical Center, and SK Corp., a pioneer in effective therapeutic invention for serious brain disorders. The partnership of the six organizations is expected to bring a broad-based cooperation opportunities and create a massive synergy effect in the brain science researches and the development of new therapeutic treatment for brain disorders by combining their resources and infrastructures. The six organizations have also built an international research network with such globally-renowned brain research institutions as RIKEN, a large natural sciences research institute in Japan, Max Plank Institute in Germany, Federal Institute of Technology, Lausanne, in Switzerland and Brain Research Institute of University of Queensland in Australia. The research network is under the support and guidance of Dennis Choi, a prominent neuroscientist who once served as the President of the Society for Neuroscience and is currently a professor in the Departments of Neurology and biology at Emory University. The tentatively titled Korea Brain Institute is envisioned to help fight brain disorders and create Korea"s new growth engine, as well as lengthening life span, by conducting convergence researches in nero science, brain science and pharmacology. If the consortium of the six organizations wins the government approval to build the proposed institute within the Daedeok complex, the central government and the Daejeon city government are expected to pour a total of 329.7 billion won into the project by 2020.
2009.01.14
View 15776
Five KAIST Students Offered Internship from Qualcomm
Qualcomm Inc., a wireless telecommunications research and development company based in San Diego, California, has offered internship for five KAIST students of the Department of Electrical Engineering and Computer Science, university authorities said on Monday (Jan. 5). The five students who are graduate and doctoral students studying communication and RFID (radio frequency identification) design will be working for six months at Qualcomm"s RFIC (radio frequency integrated circuits) Department in Santa Clara, Calif., as co-researchers. These interns will receive about $7,000 a month each with other benefits. It is the first time that Qualcomm has offered internship for students outside the U.S., according to external relations officials at KAIST. Students who have shown outstanding research output during the internship period will be offered employment at Qualcomm. "Qualcomm"s internship for KAIST students is designed to help young Korean talents to become professionals who will lead global advancement in the IT sector and strengthen its research network with Korea," Seung-Soo Kim, senior director of Qualcomm Korea, was quoted as saying. Qualcomm plans to continue providing internship program for KAIST students, as well as pursuing joint research initiatives, the officials said.
2009.01.08
View 14160
Prof. Kim's Team Wins Silver Prize at International Design Contest
A KAIST team led by Prof. Myung-Suk Kim of the Department of Industrial Design won a silver prize (given by the Mayor of Osaka) at the 17th International Design Competition held at the Osaka International Convention Center on Nov. 27. The team, made up of KAIST students Da-Woon Chung (representative), Ji-Hoon Kim and Bo-Yeon Kim, presented a sonic energy absorbing (SONEA) system to transform noise energy into electrical energy. At the 2008 competition held under the main theme of "Earth-Life: Clean Aqua, Clean Air, Clean Energy," a Chinese team won the gold prize, Japanese and Korean groups shared silver prizes, and bronze prizes were given to U.S. and German contestants. It was noteworthy that the KAIST team was the only undergraduate contestants who won the prize. Ji-hoon Kim had already won a bronze prize last year at the same competition. The International Design Competition Osaka has been held annually or biannually, organized by the Japan Design Foundation, since 1983 and is considered as one of the most prestigious design competitions.
2008.12.09
View 14447
2008 IEEE International Conference on Humanoid Robots Opens
The 2008 IEEE-RAS International Conference on Humanoid Robots, an international gathering to identify new research trends and technology in humanoid robotics, will open a three-day session on Monday (Dec. 1) at the Hotel Rivera and KAIST in Daejeon. The annual conference is organized by KAIST and the Robotics and Automation Society of the Institute for Electric and Electronic Engineers, a U.S.-based international non-profit, professional organization for the advancement of technology related to electricity. The conference is expected to draw a total of 200 robotics researchers from 19 different countries. Prof. Jun-Ho Oh, at the Department of Mechanical Engineering who led the creation of Korea"s first humanoid robot Hubo, is serving as general chair of the conference. Prof. Oh was named the host of the 2008 conference at the 2007 conference held at the Carnegie Melon University of the United States. The eight-year old conference was inaugurated in Boston in 2000. On the opening day of Dec. 1, seven lectures will be given on diverse areas of robotics including cognitive humanoid vision, and robot vision sensor and sensing. On the subsequent two days, a total of 110 papers will be presented. During the conference period, a variety of robots produced by six local and foreign robot makers will be on demonstration, providing opportunities for researchers and industrial robot makers to share technological ideas. Highlights of the conference will be special lectures by world-renowned robot researchers Prof. Yoshiyuki Sankai of University of Tsukuba, who has created an exoskeletal "robot suit," and Prof. Art Kuo of Univerity of Michigan who is regarded as a leading authority in dynamic walking. Following the conference, all participants are scheduled to tour Prof. Oh"s Hubo Lab and the Human-Robot Interaction Research Center, both located at KAIST.
2008.12.01
View 12718
KAIST Collaborating with U.S. Universities to Advance Humanoid Robotics
Hubo, a life-size walking bipedal humanoid robot, is perhaps the best-known character in Korea that KAIST has ever produced. It was shown to the government heads of the Asia-Pacific region during the APEC held in Busan, Korea, in 2005 and appeared at the hit concerts of the pop singer Jang-Hoon Kim. The humanoid robot is soon likely to catch the fancy of Americans as a U.S. government-funded project seeks to create a Hubo that can work and interact with people in collaboration with Korean scientists. "We are going to give the brains to Hubo. (Japanese) Asimo can do only pre-programmed actions. We want to create a Hubo that can help people, interact with people," said Prof. Paul Oh of the Department of Mechanical Engineering & Mechanics at Drexel University in Philadelphia and leader of the five-year international project which was launched in November 2007. The U.S.$2.5 million project is funded through the Partnership for International Research and Education (PIRE) Program of the National Science Foundation (NSF) of the United States. It brings together world-renowned experts in humanoid design and information technologies. "Dr. Jun-Ho Oh"s lab at KAIST (that has created Hubo) is the world"s leader in humanoid design and the U.S. has advanced technologies in the areas such as artificial intelligence, mechanical learning and robot vision. Combining the strengths of the two countries can create a synergy effect and develop a more advanced humanoid robot," said Paul Oh. He is currently serving as Program Director of Robotics of the NSF which is overseeing robotics research (non-military) in the U.S. consisting over 150 robotics faculty. Paul Oh"s research team consists of experts from five U.S. universities -- Drexel, Bryn Mawr College, Colby College, the University of Pennsylvania and Virginia Tech -- and KAIST. Leading a delegation of six professors and eight students, Dr. Paul Oh made a two-day visit to KAIST on Nov. 18-19 to review the progress of the project and have a technical meeting with participants. "The U.S. universities participating in this program are scattered across the nation. So we decided to have a technical meeting here in Korea," he said. Asked the reason why he chose KAIST as a partner for the program, Dr. Oh said that KAIST is willing to open Hugo to international researchers, whereas in Japan only Honda engineers are allowed to touch Asimo, which is a humanoid robot created by Honda Motor Company. The project is to establish no barrier for roboticists anywhere in the world to pursue the humanoid research; a suite of humanoid platforms will be available for researchers to develop and advance capabilities like locomotion and human-robot interaction. The team has been initially involved in development of three tools, all of which are based on the Hubo platform, in order to kick-start humanoid research in the U.S. They are the Mini-Hubo (a small, light-weight and affordable humanoid purchasable at the price lower than $8,000), On-Line Hubo (a program to operate Hubo online) and Virtual Hubo (a simulation program to do researches in cyberspace). As the first outcome of the project, the Mini-Hubo is expected to be released in the U.S. around next April. Another important purpose of the PIRE program is to seek transformative models to train scientists and engineers to effectively work in global multi-disciplined design teams. To this end, an aggregate number of 20 students from U.S. universities are to stay at the KAIST during the next five years, with two students taking turns on a six-month term. "I was really amazed how much work is done with small funding here. This is really an excellent example to learn," said Roy Gross, an undergraduate from Drexel who has been staying at Prof. Oh"s Lab for the past three months.
2008.11.21
View 16372
Method to Synthesize New Lithium Ion Battery Cathode Material Identified
A KAIST research team headed by Prof. Do-Kyung Kim at the Department of Materials Science and Engineering developed a technology to synthesize a new lithium ion battery spinel cathode which is regarded as a core part of hybrid and lithium battery cars. The research was conducted in collaboration with a research team of Prof. Yi Cui at Stanford University"s Department of Chemistry. Their findings were introduced in the November issue of Nano Letters, one of the leading academic journals in nano-science. The newly synthesized lithium ion battery spinel cathode known as spinel LiMn2O4 nanorods is attracting interests as an alternative cathode material since it is a low-cost, environmentally friendly substance for Li-ion battery cathodes. Its raw material is also highly available. Lithium ion batteries with high energy and power density are important for consumer electronic devices, portable power tools, and vehicle electrification. LixCoO2 is a commonly used cathode material in commercial lithium iron batteries. However, the high cost, toxicity, and limited abundance of cobalt have been recognized to be disadvantageous.
2008.11.20
View 11803
KAIST Team Identifies Nano-scale Origin of Toughness in Rare Earth-added Silicon Carbide
A research team led by Prof. Do-Kyung Kim of the Department of Materials Science and Engineering of KAIST has identified the nano-scale origin of the toughness in rare-earth doped silicon carbide (RE-SiC), university sources said on Monday (Oct. 6). The research was conducted jointly with a U.S. team headed by Prof. R. O. Ritchie of the Department of Materials Science and Engineering, University of California, Berkeley. The findings were carried in the online edition of Nano Letters published by the American Chemical Association. Silicon carbide, a ceramic material known to be one of the hardest substances, are potential candidate materials for many ultrahigh-temperature structural applications. For example, if SiC, instead of metallic alloys, is used in gas-turbine engines for power generation and aerospace applications, operating temperatures of many hundred degrees higher can be obtained with a consequent dramatic increase in thermodynamic efficiency and reduced fuel consumption. However, the use of such ceramic materials has so far been severely limited since the origin of the toughness in RE-SiC remained unknown thus far. In order to investigate the origin of the toughness in RE-SiC, the researchers attempted to examine the mechanistic nature of the cracking events, which they found to occur precisely along the interface between SiC grains and the nano-scale grain-boundary phase, by using ultrahigh-resolution transmission electron microscopy and atomic-scale spectroscopy. The research found that for optimal toughness, the relative elastic modulus across the grain-boundary phase and the interfacial fracture toughness are the most critical material parameters; both can be altered with appropriate choice of rare-earth elements. In addition to identifying the nano-scale origin of the toughness in RE-SiC, the findings also contributed to precisely predicting how the use of various rare-earth elements lead to difference in toughness. University sources said that the findings will significantly advance the date when RE-SiC will replace metallic alloys in gas-turbine engines for power generation and aerospace applications.
2008.10.08
View 13902
Research University Presidents Discuss Global Network to Increase Cooperation
Presidents and leaders of research universities participating in the 2008 International Presidential Forum on Global Research Universities (IPFGRU) held at the Westin Chosun Hotel in Seoul, Korea on Sept. 8, 2008 exchanged views and ideas on how to build and effectively utilize a global research network in order to increase cooperation and exchanges among institutions of science and technology across the world. The participants agreed on the need to promote the sharing of expertise and facilities, conduct joint researches and positively implement dual degree, roaming professorship and other programs that help institutions in societies at different stages of scientific and technological development maximize the fruits of their research activities. As a major goal, the participants agreed to create alliances for research and education that can become a new paradigm for global cooperation, with the outcome of discussions at the 2008 IPFGRU providing the guidelines for future endeavors in this direction. Through the day-long symposium, participants reached general agreements on the following points: --The concept of sharing faculty or roaming professorship should be actively promoted in order to accelerate global dissemination of academic expertise with the institutions and state authorities concerned easing existing restrictions to such arrangements and ensuring maximum academic freedom of professors involved. --Dual degree programs especially those involving institutions of different countries need to be further encouraged in view of their benefits of resources sharing, expansion of knowledge and cultural exchanges and that educational authorities should try to remove various forms of limitations. --As competitions over university ranking would grow intensive as institutions seek to attract better students and more donations, there is need to institutionalize a fairer, globally recognized national, regional and international assessment systems. --In view of rapid expansion of interdisciplinary researches which calls for the sharing of facilities and expertise among different institutions, it is necessary to establish national or regional hubs to make state-of-the-art facilities and equipment available for researchers and research programs experiencing limitations in financial and material resources. --National governments and political leaders should better recognize the importance of science and technology for societal and global prosperity and the science and technology community needs to make more communicative approaches to politicians so that greater trust may be built between them. --Arrangements to conduct joint research involving international industries, academia and government should be accelerated with a view to addressing the common problems facing the mankind in the 21st century, including energy, environment, water, food and sustainability. The United Nations and other international organizations need to provide stronger support for research universities’ efforts in this direction. --Research universities across the world should make concerted efforts to establish a global cooperative network that can facilitate the flow of information, resources and research personnel to realize universal advancement of science and technology and, ultimately, enhance the quality of human life. Keynote speakers and panelists and the subjects of their presentations were: Participants" List Topic Name of University Speaker Position 1. Roaming Professorships: To Whose Benefit? Illinois Institute of Technology John L. Anderson President Improving the Competitiveness of Global University Education National University of Sciences and Technology Muhammad Mushtaq Pro-Rector Improving the Competitiveness of Global University Education Tianjin University Fuling Yang Director of International Cooperation Office Sharing Differences in Culture and Environment for Sustainable Education for the Future Generation Kumamoto University Tatsuro Sakimoto President Sharing Differences in Culture and Environment for Sustainable Education for the Future Generation Odessa National I. I. Mechnikov University Sergiy Skorokhod Vice Rector for International Cooperation Promoting Science and Engineering Education among Secondary Students Czech Technical University of Prague Miroslav Vlcek Vice Rector Promoting Science and Engineering Education among Secondary Students South China University of Technology Xueqing Qiu Vice President Preserving and Utilizing Expert Knowledge for Better Education Eotvos Loran University Jösef Nemes-Nagy Vice Dean 2. Dual Degree Programs: Future Potential & Challenges University of Queensland Paul Greenfield President and Vice Chancellor Benefits of Dual Degree Program Institut National des Sciences Appliquées de Lyon Martin Raynaud Director, International Relations Benefits and Limitations of Dual Degree Program National Institute of Development Administration Pradit Wanarat Vice President for Academic Affairs The Role of Dual Degree Program Easing Brain Drain Nanyang Technological University Lam Khin Yong Associate Provost, Graduate Education & Special Projects International Dual Degree Programs and Strategies Georgia Institute of Technology Steven W. McLaughlin Vice Provost, International Initiatives Dual Degree Program and Global Learning Networks City University of Hong Kong Richard Yan-Ki Ho Special Advisor to the President Raising International IQs of Scientists and Engineers for Global Enterprise Technion, Israel Institute of Technology Moshe Shpitalni Dean, Graduate Studies Luncheon Speech “Beneficial Relationships between Academia and Companies” Medical Information Technology A. Neil Pappalardo Chairman and CEO 3. Sharing Facilities and Expertise KAIST Nam Pyo Suh President Promoting International Sharing of Research Facilities and Expertise to Strengthen Research Outcomes Griffith University Ian O"Connor President Economic Benefits of Sharing Research Facilities and Expertise POSTECH Sunggi Baik President Economic Benefits of Sharing Facilities and Expertise: National NanoFab Center National NanoFab Center Hee Chul Lee President Communicating Science and Technology to Political Leaders Office of the President of KOREA Chan Mo Park Special Advisor to the President for Science and Technology Filling the Gap of University Resources Bandung Institute of Technology Djoko Santoso Rector 4. An Approach to Joint Research Ventures with NASA NASA Yvonne Pendleton Deputy Associate Center Director Benefits of International Joint Venture Research Projects University of Adelaide Martyn J. Evans Director, Community Engagement Benefits of International Joint Projects Mahidol University Sansanee Chaiyaroj Vice President International Joint Research Projects University of Iowa P. Barry Butler Dean, College of Engineering Joint Research: University of Technology Malaysia’s Experience at National and International Level University Technology of Malaysia Tan Sri Mohd Ghazali Vice-Chancellor Sharing Intellectual Property Rights Paris Institute of Technology Cyrille van Effenterre President Global Economic and Social Contribution of International Joint Project Cooperation Kyushu University Wataru Koterayama Vice President 5. Globalization through Interfacing with Existing Networking Technical University of Denmark Lars Pallesen Rector Establishing Global Science and Technology Networking National Cheng Kung University Da Hsuan Feng Senior Executive Vice President Establishing Global Science and Technology Networking University of Technology of Troyes Christian Lerminiaux President The Role of Global Science and Technology Network for Higher Education in the 21st Century Iowa State University Tom I-P. Shih Department Chair Regionalized or Globalized Science and Technology Networking Babes-Bolyai University Calin Baciu Dean, Faculty of Environmental Sciences Globalized Science and Technology Networking Harbin Institute of Technology Shuguo Wang President Connecting Regional Science and Technology Networks for the Global Networking Ritsumeikan University Sadao Kawamura Special Aide to the Chancellor How Can a Publisher Strengthen the Global Network of Universities? Elsevier Youngsuk Chi Vice Chairman
2008.09.18
View 19756
KAIST, KARI to Conduct Joint Research, Exchange Tech Manpower
KAIST and the Korea Aerospace Research Institute (KARI) have agreed to conduct joint researches and exchange technical personnel in order to spur research activities on artificial satellite and other aerospace technology, KAIST announced Wednesday, Sept. 17. An MOU was signed in a ceremony at the KARI Tuesday, attended by senior officials of the two institutions which both are located in the Daedeok Technopolis in Daejeon City. Researchers from KARI will participate in KAIST"s interdisciplinary project of "Space Exploratory Engineering" and the two organizations will also jointly take part in the International Lunar Network (ILN), an international moon exploration program, to accelerate development of space technology in Korea. As a result of the tieup, Dr. Lee So-yeon, Korea"s first astronaut who lived in space for a week aboard a Russian spacecraft this year, will be able to teach and conduct research at KAIST as an adjunct professor. Lee earned her doctorate from KAIST.
2008.09.17
View 13342
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 20