본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
THE
by recently order
by view order
High Resolution 3D Blood Vessel Endoscope System Developed
Professor Wangyeol Oh of KAIST’s Mechanical Engineering Department has succeeded in developing an optical imaging endoscope system that employs an imaging velocity, which is up to 3.5 times faster than the previous systems. Furthermore, he has utilized this endoscope to acquire the world’s first high-resolution 3D images of the insides of in vivo blood vessel. Professor Oh’s work is Korea’s first development of blood vessel endoscope system, possessing an imaging speed, resolution, imaging quality, and image-capture area. The system can also simultaneously perform a functional imaging, such as polarized imaging, which is advantageous for identifying the vulnerability of the blood vessel walls. The Endoscopic Optical Coherence Tomography (OCT) System provides the highest resolution that is used to diagnose cardiovascular diseases, represented mainly by myocardial infarction. However, the previous system was not fast enough to take images inside of the vessels, and therefore it was often impossible to accurately identify and analyze the vessel condition. To achieve an in vivo blood vessel optical imaging in clinical trials, the endoscope needed to be inserted, after which a clear liquid flows instantly, and pictures can be taken in only a few seconds. The KAIST research team proposed a solution for such problem by developing a high-speed, high-resolution optical tomographic imaging system, a flexible endoscope with a diameter of 0.8 mm, as well as a device that can scan the imaging light within the blood vessels at high speed. Then, these devices were combined to visualize the internal structure of the vessel wall. Using the developed system, the researchers were able to obtain high-resolution images of about 7 cm blood vessels of a rabbit’s aorta, which is similar size to human’s coronary arteries. The tomography scan took only 5.8 seconds, at a speed of 350 scans per second in all three directions with a resolution of 10~35㎛. If the images are taken every 200 ㎛, like the currently available commercial vascular imaging endoscopes, a 7cm length vessel can be imaged in only one second. Professor Wangyeol Oh said, “Our newly developed blood vessel endoscope system was tested by imaging a live animal’s blood vessels, which is similar to human blood vessels. The result was very successful.” “Collaborating closely with hospitals, we are preparing to produce the imaging of an animal’s coronary arteries, which is similar in size to the human heart,” commented Professor Oh on the future clinical application and commercialization of the endoscope system. He added, “After such procedures, the technique can be applied in clinical patients within a few years.” Professor Oh’s research was supported by the National Research Foundation of Korea and the Global Frontier Project by the Korean government. The research results were published in the 2014 January’s edition of Biomedical Optics Express. Figure 1: End portion of optical endoscope (upper left) Figure 2: High-speed optical scanning unit of the endoscope (top right) Figure 3: High-resolution images of the inside of in vivo animal blood vessels (in the direction of vascular circumference and length) Figure 4: High-resolution images of the inside of in vivo animal blood vessels (in the direction of the vein depth)
2014.03.25
View 10260
Box-shaped Pressure Vessel for LNG Developed by KAIST Research Team
Earlier today, Korean researchers successfully showcased the installation and operation of a box-shaped, high-pressure tank for the storage of liquefied natural gas in Pohang, Republic of Korea. The development was the first of its kind in the world. Pressure vessels have many applications and are widely used within the petrochemical, energy, and other industrial sectors where the transport and storage of many types of pressurized gases and fluids are essential. Pressure vessels must be designed, manufactured, installed, and operated strictly in accordance with the appropriate codes and standards since they can, in cases of leak or rupture, pose considerable health and safety hazards. Pressure vessels are normally designed in the form of a cylindrical or spherical tank. These shapes are, in principle, highly efficient in withstanding internal pressure, but rather inefficient in terms of space utilization. The tanks fit very poorly within a typically prismatic-shaped room. They cannot be packed closely together, so they do not efficiently utilize the overall space. Moreover, cylindrical or spherical tanks are not easily scalable to very large sizes because the wall thickness of the tank must increase proportionally to its overall radius. Therefore, a large pressure vessel unavoidably will have very thick walls, which are difficult and expensive to manufacture, requiring a great amount of thick-walled steel to be rolled, forged, and welded together. KAIST researchers, sponsored by POSCO, a multinational steel-making company based in Pohang, Republic of Korea, have taken a turnabout approach to construct a pressure vessel that is neither cylindrical nor spherical. Professors Pål G. Bergan and Daejun Chang and of Ocean Systems Engineering at KAIST developed a box-type, large size pressure vessel for the storage and transportation of liquids such as liquefied petroleum gas (LPG), compressed natural gas (CNG), or liquefied natural gas (LNG). The box-shaped pressure vessel has an internal, load-carrying lattice-type structure. The lattice pattern is modular in all three spatial directions, thereby effectively anchoring and balancing pressure forces on the external walls of the vessel. The modular lattice can easily be adapted to prescribed pressure levels as the overall volumetric dimensions are directly linked to the number of repetitive modules. A giant prismatic pressure vessel with a size of 20,000 m3 and a design pressure of 10 atmospheres (10 barg) can be built simply by scaling up a smaller size pressure vessel. It is interesting to note that the thickness of steel walls remains unchanged and that the weight of steel per unit storage volume goes down as the vessel size increases. Professor Chang explained the benefit of a prismatic or box-shaped pressure vessel.“If we use cylindrical pressure vessels to supply LNG fuel for a large container ship, for example, many fuel tanks will be needed. Those tanks will take up large and valuable space onboard because the cylinders have to be lined up. In our case, however, much less space is needed. The operation of a ship becomes simpler with one fuel tank rather than with many. Furthermore, our box-type pressure vessel can be designed with dimensions that precisely fit a ship. For a container ship, there may be room for a substantially higher number of containers to be loaded than when using cylindrical vessels. In a case study on a 13,000 TEU container ship, the value of the increased transport capacity tuned out USD 8.4 million for one year of operation for one ship.”The manufacturing cost of a pressure vessel has been reduced as well. Several types of special steel for cryogenic (low temperature) applications have been investigated in design and analysis studies, and this includes a new type of high-manganese steel that is being developed by POSCO. Regardless of materials, in any instance of large pressure vessels, the new lattice tank technology can offer significant savings of combined capital and operational costs. Professor Bergan was also upbeat regarding the impact of the KAIST technology innovation. “Our box-type pressure vessel represents ground-breaking research. This innovative technology will dramatically change the rules of the game for industry concerning production, transportation, and storage of fluids under high pressure and at low temperatures.”The showcased prismatic pressure vessel was a scale-down model with a volume size of 80 m3 and design pressure of 10 atmospheres. The vessel complies with the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC), the international standard for the appropriateness of design, fabrication, and inspection of boilers and pressure vessels. It passed the 15 pressure testing in January 2014 and received an accreditation from the ASME BPVC (ASME U2 Stamp). KAIST’s prismatic pressure vessel will be presented and displayed at Gastech 2014, the largest global conference and exhibition in the natural gas, LNG, and hydrocarbons industry. This event will take place on March 24-27 at KINTEX in Ilsan, Republic of Korea. Youtube: http://www.youtube.com/watch?v=woJwc5zisxk&list=TLGOLcI7L6_YYTn0lImPqNyeppQWRXqUt5Picture 1: The prototype of a prismatic pressure vesselPicture 2: A lattice pattern that is lined inside a prismatic pressure tankPicture 3: Above is a container ship having a box-shaped pressure vessel as a fuel tank, and below are traditional cylindrical fuel tanks.
2014.03.25
View 13301
Professor Kyung-Wook Paik Receives the Best Presentation Award from 2014 Pan Pacific Symposium
The Surface Mount Technology Association (SMTA) hosted its 19th Annual Pan Pacific Microelectronics Symposium on February 11-13, 2014 in Hawaii. The 2014 conference, promoting international technical exchange and extensive networking among microelectronics professionals from around the world, presented over 50 papers from 17 countries. Professor Kyung-Wook Paik of Materials Science Engineering at KAIST received the Best Presentation Award for his paper titled, “Novel Nanofiber Anisotropic Films for Nine Pitch Assembly” at the conference. SMTA is an international network of professionals in electronics assembly technologies, including Microsystems, emerging technologies, and related business operations.
2014.03.17
View 8386
The Korea Herald: Synthetic Biology Holds Key to Future
The Korea Herald , a leading English newspaper in Korea, published an article on the production of gasoline by a metabolically engineered microorganism. For the article, please go to the link below: The Korea Herald March 14, 2014 "Synthetic biology holds key to future" KAIST professor makes breakthrough in biorefining using E. coli’s metabolic process http://www.koreaherald.com/view.php?ud=20140314001343
2014.03.17
View 6952
Tae-Wan Kim, a doctoral candidate, receives the best paper award from ECTC
The 2014 Electronic Components and Technology Conference (ECTC) will take place on May 27-30 in Florida, USA. Tae-Wan Kim, a Ph.D. candidate at the Department of Materials Science Engineering (MSE), KAIST, will receive the Intel Best Student Paper Award at the conference.ECTC is the premier international conference that brings together the best researchers and engineers in packaging, components and microelectronic systems science, technology and education in an environment of cooperation and technical exchange. The conference is sponsored by the Components, Packaging and Manufacturing Technology (CPMT) Society of IEEE (Institute of Electrical and Electronics Engineering).The paper describes research on novel nanofiber anisotropic conductive films for ultra fine pitch electronic package application, which was written under the guidance of Professor Kyung-Wook Paik of the MSE Department. In the past ten years, two of his students have received the best paper award from ECTC.
2014.03.14
View 10216
Visit by Sir Paul Maxime Nurse, President of the Royal Society
Sir Paul Maxime Nurse, who is an English geneticist and cell biologist, visited KAIST and gave a lecture entitled The Great Ideas of Biology on March 11, 2014. Sir Paul was awarded the 2001 Nobel Prize in Physiology or Medicine with Leland H. Hartwell and R. Timothy Hunt for their discoveries of protein molecules that control the division of cells in the cell cycle. He was Professor of Microbiology at the University of Oxford, CEO of the Imperial Cancer Research Fund and Cancer Research UK, and President of Rockefeller University in New York. Sir Paul is currently the President of the Royal Society as well as Director and Chief Executive of the Francis Crick Institute. Founded in London in 1660, the Royal Society is composed of the world’s most distinguished scientists drawn from all areas of science, engineering, and medicine. Below is a summary of his lecture, The Great Ideas of Biology: Four major ideas of biology are the theory of genes, evolution by natural selection, the proposal that the cell is the fundamental unit of all life, and the chemical composition of a cell. When considering the question “what is life?” these ideas come together. The special way cells reproduce provides the conditions by which natural selection takes place, allowing living organisms to evolve. The organization of chemistry within the cell provides explanations for life’s phenomena. In addition, an emerging idea is the nature of biological self-organization with which living cells and organisms process information and acquire specific forms. These great ideas have influenced one another and changed the way we perceive biology and science today.
2014.03.11
View 9587
KAIST Holds the 2014 System on Chip (SoC) Robot War in August and October
Domestic and international competitions for robots with artificial intelligence are organized by Professor Hoi-Jun Yoo of Electrical Engineering. KAIST will host two robot competitions this year: The Robot Integration Festival will be held in August at the Convention Center in Daejeon and the International Robot Contest in October at the Kintex in Ilsan. Participating robots are developed based on the System on Chip (SoC). SoC robots refer to an autonomous robot that has a processor, a memory, peripheral devices, logic, and other system components combined on a single chip, which enables the robots to handle tasks and make decisions without human intervention. The competitions include three entries: Taekwon Robot, HURO-competition, and SoC Drone which was added for the first time this year. The Taekwon Robot involves a one-on-one sparring match, using a Korean traditional martial art, between two robots. Competitors score points based on front and side kicks, as well as punching. The HURO-competition pits robots in a competition to perform assignments such as hurdling, barricade clearing, crossing bridges, and overcoming other obstacles. The SoC Drone evaluates robots' capability to track miniature cars and navigate between buildings while in flight. The drone should have two cameras and a SoC brainboard equipped to offer autonomous, remote-controlled flight. The director of the competitions, Professor Hoi-Jun Yoo of Electrical Engineering at KAIST, commented that with the integration of Korea’s world-class semiconductor technology, the competitions would lead to improvements in robotics engineering and unmanned aerial vehicle technology. The competitions are open to anyone interested in SoC robots and unmanned aerial vehicles. For more information about the competitions, please visit http://www.socrobotwar.org . The application deadline is April 15, 2014.
2014.03.11
View 9755
The 4th Meeting of Korea and Denmark Alliance for Green Growth
President Steve Kang attended the “Fourth Meeting of Korea and Denmark Alliance for Green Growth” which took place on March 6, 2014 at the Shilla Hotel in Seoul. President Kang was a keynote speaker at the meeting and gave a lecture on sustainable energy. KAIST and the Technical University of Denmark (DTU) signed a memorandum of understanding (MOU) on the “Cooperation for Innovation and Entrepreneurship” at the meeting. In the MOU, KAIST and DTU agreed to post the information on their websites regarding the patents acquired through the implementation of joint research programs. In addition, KAIST students will attend conferences and idea competitions organized by DTU, e.g., the Green Challenges. DTU students will participate in KAIST’s conferences and competitions including “Startup KAIST Global Idea Competition.”
2014.03.07
View 7979
Seung-Han Lee, a doctoral student in electrical engineering, receives the best paper award from ISQED 2014
Seung-Han Lee, a doctoral candidate in the department of electrical engineering at KAIST, received a Best Paper Award from the International Symposium on Quality Electronic Design (ISQED), a high-profile international conference started in 2000 to promote innovation and quality in electronic and engineering designs through inter- and multidisciplinary approaches. The award ceremony will take place at the 2014 ISQED on March 3-5, 2014 at the Convention Center in Santa Clara, CA, USA. Professor Chong-Min Kyung, an advisor to Seung-Han, expressed his excitement about his student's achievement. “This is the first time a Korean has ever received the best paper award at this academic conference. It’s great news to our student as well as to KAIST.” The topic of Lee’s research paper was dynamic cache data management for minimizing the energy consumption of three-dimensional multi-processor semiconductor chips.
2014.03.03
View 9169
Quacquarelli Symonds (QS) World University Rankings by Subject 2014
The QS World University Rankings are annual university rankings published by Quacquarelli Symonds (QS) which provides the overall rankings of top global universities as well as the rankings for individual subjects. The 2014 QS World University Rankings by Subject is a comprehensive guide to the world’s best universities in 30 popular subjects of 5 academic disciplines: arts & humanities, engineering & technology, life sciences & medicine, natural sciences, and social sciences. According to the 2014 subject rankings, released on February 26, KAIST made the list of top 50 universities in 9 subjects: physics & astronomy; materials sciences; chemistry; chemical engineering; mechanical, aeronautical & manufacturing engineering; electrical & electronic engineering; civil & structural engineering; computer science & information systems; and biological sciences. Among them, KAIST was ranked number one in Korea for 5 subjects: materials sciences (16th); mechanical, aeronautical & manufacturing engineering (21st); civil & structural engineering (32nd); computer science & information systems (36th), and biological sciences (43rd). For basic sciences, KAIST has made good progress as well. For example, in mathematics, KAIST took first place in Korea and was ranked in the 51st-100th of the world’s top universities. Another notable result was that its business college in Seoul campus, a relatively new addition to KAIST, made the rankings list of 51st-100th in accounting & finance. The 2014 QS subject rankings used the following criteria for its evaluation of university performance: a survey of academic and employer reputation, citations per paper, inclusion of specialists, and the h-index, known as the Hirsch index or Hirsch number, which was suggested by Jorge E. Hirsch, a physicist at the University of California in San Diego, as a tool for determining theoretical physicists’ relative quality. Today, the h-index is used to measure both the productivity and impact of the published work of a scientist or scholar.
2014.02.28
View 10375
KAIST President Held One-year Anniversary Press Conference
President Steve Kang had a press conference on February 25, 2014 at the Faculty Club on campus, commemorating the first year of his presidency. About 30 different media representatives nationwide attended the meeting. At his first press conference on the anniversary of his tenure, President Kang described what he has achieved in the past year, which were: 1) rebuilding the campus culture to start a campaign for mutual respect, trust, and open communication by holding meetings with the members of the KAIST community more than 60 times, 2) establishing core values, creativity and challenge, to enhance the fabric of the community, 3) restructuring of the university administration, and 4) the announcement of the mid- and long-term development plan. He also mentioned that “2014 will be another exciting year for KAIST to make more progress” and laid out a few major projects to be implemented this year: launching of the “Committee for Engineering Education Innovation,” “Startup KAIST” (an entrepreneurship program), “Greater Collaboration in Technology Translation and Management with Seoul National University,” and “KAIST End Run” (a global business incubation program).Explanation of 2014 Major Endeavors by President KangFor the past decade, domestic engineering schools weighed SCI dissertation publication more heavily in university evaluations, yielding a world-class research level. However, such an approach resulted in placing less importance on entrepreneurship, commercialization, or creating economic values.As a result, engineering Professors have been evaluated as being too focused on theoretical SCI dissertation research rather than practical research that could yield economic benefits through commercialization of developed technology. In addition, some have criticized that engineering universities have not educated creative researchers demanded by the industry.KAIST has begun responding to these criticisms and has made a few suggestions to strengthen engineering education, promote entrepreneurship in engineers, and globalize Korean venture companies.As part of such efforts, KAIST established the KAIST Education and Research Innovation Committee, composed of various individuals from the industry, research institutes, alumni, faculty members, and others, to discuss ways to reinforce engineering education. A course to encourage entrepreneurship will be implemented.Startup KAIST will develop and commercialize innovative ideas from members of KAIST, and the End Run project will enable students and faculty to establish a global, venture company. KAIST hopes that a new entrepreneurial culture will be created on campus, thereby the research success of KAIST members will lead to commercialization and startups.KAIST plans on releasing free internet lectures as part of its knowledge contribution and sponsoring programs which will level the playing field in eduation.KAIST will establish the KAIST Open Online Course (KOOC). An entrepreneurship curriculum will be developed for KOOC. KAIST will start trials for KOOC from 2015, gradually expanding to include more courses.
2014.02.27
View 8554
A game enthusiast received a Ph.D. at the 2014 commencement
A high school student, who was addicted to video gaming and had barely managed to gain entrance to KAIST, became a star of its 2014 commencement ceremony. The student was Tae-Woo Park who received his Ph.D. in games at 32 years of age. Park entered KAIST in 2002 as an undergraduate student. However, owning to bad grades, he was not accepted to the graduate school of KAIST until 2006. He began playing games at the age of 7, which distracted him from his studies at an early age. Nevertheless, he was able to complete master’s degree after two and a half years, which normally takes two years for average students. Professor Joon-Hwa Song saw a possibility from his student’s experience of producing and commercializing a mobile puzzle game while Park was working as a president of the game club, HAJE, at KAIST. Professor Song advised him to take the advantage of his interests and try developing game platforms and contents. Park decided to develop a game that could help others and would change people’s negative views of games. He created a whole new generation of games. In order to find ideas for games that can be easily enjoyed in daily lives, Park went to numerous gyms, swimming pools, daycare centers, and parks to analyze people’s behaviors and discussed with his colleagues who were also interested in games. During this process, the experience of organizing creative ideas through cooperation and discussions became a great foundation for his future research. He observed some people quitting midway during a workout on treadmills because they were bored with working out alone. From this, Park embarked on developing a new style of game that allowed people to exercise together. Park used the system on a treadmill, which recognizes the speed of the person running to automatically adjust the machine’s speed, to develop an interactive game platform for Swan Boat. The Swan Boat game is a race exercise game that adjusts the direction according to speed difference between two players. The game utilizes the difference of running speed between two people on treadmills to change the direction of the boat. With the Swan Boat game, people can now play games and exercise at the same time. The technology also allows online access anywhere in the world, which means checking friends’ rankings at nearby gyms or homes, or even a World Gym Running Contest. In addition, Park helped develop various next generation exercise games and life-based services, including the sparrow chirp application, which finds children that go astray, or an avatar game that utilizes the user’s daily life patterns. These results and papers attracted attention from international societies and have also won a number of awards. Professor Song said, “There has been no precedent of receiving a Ph.D. at KAIST for developing games, however, Park’s case has given courage to many people that if you can create what is really required in everyday life, you can indeed receive a doctor’s degree.” Park remarked, “I’d like to express my gratitude to my advisor, Professor Song, for giving me courage. I want to continue to make games that can help people’s lives in the future.” Park will continue his work at the NASA Ames Research Center this June.
2014.02.27
View 9635
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 46