KAIST and Chungnam National University (CNU) built a pedestrian walkway ("pedway") that physically brings them closer than ever. Opened on April 13, 2015, the KAIST-CNU Pedway now offers members of the two universities a quick and scenic road to walk or bike for their campus visit.
The 180-meter-strip, with a width of four meters, starts from KAIST’s student dormitories, Narae and Mir Halls, and arrives at the backyard of the College of Agriculture and Life Sciences building at CNU. For security and safety precaution, emergency alarms, CCTVs and security lights are installed along the path.
A commemorative event celebrating the opening of the pedway was held on April 15, 2015 at the KAIST campus. Along with senior administrators of the two universities, In-Sik Kim, Chairman of Daejeon City Assembly, Choon-Hee Baek, Deputy Mayor for Political Affairs of Daejeon, President Steve Kang of KAIST, and President Sang-Chul Jung of CNU will attend the event.
CNU is located just a twenty-minute walk from KAIST, but the two universities have had little interaction. To promote more collaboration and exchange, KAIST and CNU signed a memorandum of understanding on the cooperation of education, research, and medicine in June 2014.
With the KAIST-CNU Pedway as the stepping stone, the two universities will strengthen their cooperation in academic information exchange allowing access to their libraries and establishing the Graduate School of Integrated Medical Science in Sejong.
President Kang said, “Universities should not be isolated islands from the local community, but should act as bridges between different districts.” He continued, “I hope this pedway can be the starting point.”
President Jung said, “I hope this road can remove the wall between KAIST and Chungnam National University, in terms of knowledge, information, and people. I further hope that it will become the symbol and token of unity of the two universities.”
<A group photo taken at the 2025 GESS Special Lecture. Vice President So Young Kim from the International Office, VC Jay Eum from GFT Ventures, Professor Byung Chae Jin from the Impact MBA Program at the Business School, and Research Assistant Professor Sooa Lee from the Office of Global Initiative> The “2025 KAIST Global Entrepreneurship Summer School (2025 KAIST GESS),” organized by the Office of Global Initiative of the KAIST International Office (Vice President So
2025-07-01< Photo 1. (From left) Professor Jihan Kim, Ph.D. candidate Yunsung Lim and Dr. Hyunsoo Park of the Department of Chemical and Biomolecular Engineering > In order to help prevent the climate crisis, actively reducing already-emitted CO₂ is essential. Accordingly, direct air capture (DAC) — a technology that directly extracts only CO₂ from the air — is gaining attention. However, effectively capturing pure CO₂ is not easy due to water vapor (H₂O) present in the air. KAIST r
2025-06-29< Photo 1. (From left) Professor John Rogers, Professor Gregg Rothermel, Dr. Sang H. Choi > KAIST announced on June 27th that it has appointed three world-renowned scholars, including Professor John A. Rogers of Northwestern University, USA, as Invited Distinguished Professors in key departments such as Materials Science and Engineering. Professor John A. Rogers (Northwestern University, USA) will be working with the Department of Materials Science and Engineering from July 2025 to J
2025-06-27< (From left) Kyungmin Choi (MS-Ph.D. integrated course, Department of Chemistry), Dr. Beomsoon Park, Professor Soon Hyeok Hong, Dr. Kyoungil Cho > Approximately 1.5 billions of tires are discarded globally every year, and this is identified as one of the major causes of serious environmental pollution. The research team at the Department of Chemistry at KAIST has achieved a breakthrough by selectively converting waste tires into high-purity cyclic alkenes, valuable chemical buildin
2025-06-26< Photo 1. (From left) Professor Steve Park of Materials Science and Engineering, Kyusoon Pak, Ph.D. Candidate (Army Major) > Traditional military training often relies on standardized methods, which has limited the provision of optimized training tailored to individual combatants' characteristics or specific combat situations. To address this, our research team developed an e-textile platform, securing core technology that can reflect the unique traits of individual combatants and
2025-06-25