본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Seung-Man+Yang
by recently order
by view order
Photonic crystals allow the fabrication of miniaturized spectrometers
By Courtesy of Nanowerk Photonic crystals allow the fabrication of miniaturized spectrometers (Nanowerk Spotlight) Spectrometers are used in materials analysis by measuring the absorption of light by a surface or chemical substance. These instruments measure properties of light over a specific portion of the electromagnetic spectrum. In conventional spectrometers, a diffraction grating splits the light source into several beams with different propagation directions according to the wavelength of the light. Thus, to achieve sufficient spatial separation for intensity measurements at a small slit, a long light path – i.e., a large instrument – is required. However, for lab-on-a-chip or microTAS (total analysis system) applications, the spectrometer must be integrated into a sub-centimeter scale device to produce a stand-alone platform. To achieve this, researchers at the Korea Advanced Institute of Science and Technology (KAIST) propose a new paradigm in which the spectrometer is based on an array of photonic crystals with different bandgaps. "Because photonic crystals refelct light of different wavelengths selectively depending on their bandgaps, we can generate reflected light spanning the entire wavelength range for analysis at different spatial positions using patterned photonic crystals," Seung-Man Yang, Director of the National Creative Research Initiative Center for Intergrated Optofluidic Systems and Professor of the Department of Chemical & Biomolecular Engineering at KAIST, tells Nanowerk. "Therefore, when the light source impinges on the patterned photonic crytals, we can construct the spectrum using the reflection intensity profile from the constituent photonic crystals." Photonic crystals – also known as photonic band gap material – are similar to semiconductors, only that the electrons are replaced by photons (i.e. light). By creating periodic structures out of materials with contrast in their dielectric constants, it becomes possible to guide the flow of light through the photonic crystals in a way similar to how electrons are directed through doped regions of semiconductors. The photonic band gap (that forbids propagation of a certain frequency range of light) gives rise to distinct optical phenomena and enables one to control light with amazing facility and produce effects that are impossible with conventional optics. To demonstrate this new concept based on patterned photonic crystals, Yang and his group used non-close-packed colloidal crystals of silica particles dispersed in photocurable resin. Due to the repulsive interparticle potential, monodisperse silica particles spontaneously crystallize into non-close-packed face-centered cubic (fcc) structures at volume fractions above 0.1. Therefore, the particle volume fraction determines both the lattice constant and the bandgap position. a) Optical image of an ETPTA film containing porous photonic crystal stripe patterns with 20 different bandgaps. b) Reflectance spectra from the 20 strips. c) Optical microscope image of the middle region with the parallel stripe pattern (denoted as white-dotted box in a). d) Cross-sectional SEM images of first, sixth, eleventh and seventeenth strips. The scale bars in a, c and d are 1 cm, 2mm and 2 µm, respectively. (reprinted with permission from Wiley-VCH Verlag) Reporting their findings in a recent issue of Advanced Materials ("Integration of Colloidal Photonic Crystals toward Miniaturized Spectrometers"), the KAIST team has demonstrated the integration of colloidal photonic crystals with 20 different bandgaps into freestanding films (prepared by soft lithography), and their application as a spectrometer. Yang explains that the team was able to precisely control the photonic bandgap by varying the particle size and volume fration. "The prepared colloidal composite structures showed high physical rigidity and chemical resistivity" he says. "The composite structure is suitable for spectroscopic use due to the small full widths at half maximum (FWHMs) of the reflectance spectra, which mean that there is little overlap of the reflectance spectra of neighboring photonic crystal strips." "On the other hand" says Yang, "porous photonic crystals showed large FWHMs and high reflectivities, which should prove useful in many practical photonic applications that require high optical performance and physical rigidity as well as simple and inexpensive preparation." In addition to fabricating miniaturized spectrometers, which can for instance be integrated into small lab-on-a-chip devices, these integrated photonic crystals can be potentially used for tunable band reflection mirrors, optical switches, and tunable lasing cavities. Moreover, patterned photonic crystals with RGB colors are well-suited for use in reflection-mode microdisplay devices. Yang points out that, although the spectrometric resolution can be reduced by employing the smaller bandgap interval and photonic bandwidth, there is a limitation. "Now, we are studying photonic crystals with continuous modulation of bandgap position. We expect that the photonic crystals can reduce the resolution to 0.01 nm." By Michael Berger. Copyright 2010 Nanowerk
2010.03.17
View 13075
KAIST Research Team Unveils Method to Fabricate Photonic Janus Balls
A research team led by Prof. Seung-Man Yang of the Department of Chemical and Biomolecular Engineering has found a method to fabricate photonic Janus balls with isotropic structural colors. The finding draws attention since the newly-fabricated photonic balls may prove useful pigments for the realization of e-paper or flexible electronic displays. The breakthrough was published in the Nov. 3 edition of the science journal "Advanced Materials." The Nov. 6 issue of "Nature" also featured it as one of the research highlights under the title of "Future Pixels." Prof. Yang"s research team found that tiny marbles, black on one side and colored on the other, can be made by "curing" suspensions of silica particles with an ultraviolet lamp. When an electric field is applied, the marbles line up so that the black sides all face upwards, which suggests they may prove useful pigments for flexible electronic displays. The researchers suspended a flow of carbon-black particles mixed with silica and a transparent or colored silica flow in a resin that polymerizes under ultraviolet light. They then passed the mixture through a tiny see-through tube. The light solidified the silica and resin as balls with differently colored regions, each about 200 micrometers in diameter. Over the last decades, the development of industrial platforms to artificially fabricate structural color pigments has been a pressing issue in the research areas of materials science and optics. Prof. Yang, who is also the director of the National Creative Research Initiative Center for Integrated Optofluidic Systems, has led the researches focused on fabrication of functional nano-materials through the process of assembling nano-building blocks into designed patterns. The "complementary hybridization of optical and fluidic devices for integrated optofluidic systems" research was supported by a grant from the Creative Research Initiative Program of the Ministry of Education, Science & Technology.
2008.11.12
View 12999
Professor Yang Named Recipient of Dupont Science & Technology Award
Professor Yang Named Recipient of Dupont Science & Technology Award - Named as the recipient of Dupont Science & Technology Award of 2007- In recognition of his development of optical?bio-functional photonic crystal structures through Self-assembly of nanoparticles Seung-Man Yang, a professor of Chemical and Biomolecular Engineering of KAIST (President Nam Pyo Suh) and the president of the National Creative Research Initiatives Center for Photon and Fluid Integrated Circuit by the Ministry of Science and Technology, has been named as the recipient of Dupont Science & Technology Award. Dupont Korea, associate of Dupont, a world-class science firm, has established and conferred ‘Dupont Science & Technology Award’ since 2002 to promote basic sciences and industrial development of Korea. Dupont Science & Technology Awards are awarded to scientists of universities or state-run institutes who have made outstanding R&D achievements in the fields of Chemistry, Chemical Engineering, Material Science and Material Engineering within five years. Dupont Korea announced on May 2, 2007 that Professor Yang is the recipient of the award this year, following the strict examination by the Koran Academy of Science and Technology (KAST). The reason for the award is Professor Yang’s development of prototype optical?bio-functional photonic crystal structures that can process a huge amount of data, resulting from a study that has discovered the principle of Self-assembly where multifunctional nanoparticles are manufactured and assembled for themselves. Professor Yang’s recent research result about photon structures and nano patterns was published by Nature (February 2, 2006 edition); posted on Heart-Cut, the portal site of the American Chemistry Society (ACS), as highlight paper two times (November 4, 2002 and May 1, 2006); and introduced at Research/Researcher of MRS Bulletin by the U.S. Material Research Society (MRS) as main paper in December 2003. Professor Yang is very famous in Korea and abroad for the excellences of his research achievements and has made request seminars at Harvard University, University of Wisconsin, Caltech, University of California, etc. He is also invited speaker and session organizer of the MRS and the SPIE.
2007.05.08
View 17125
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1