연수연구원

한국과학기술원 NCS 기반 직무기술서 <연수연구원_기계>

	연수연구원_		대분류	중분류	소분류	세분류	
채용분야	원두원두원 <u>-</u> 기계	분류체계	*15.기계	*01.기계설계	*02.기계설계	*02.기계시스템설계	
설립이념	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원						
KAIST 주요사업	○ Education: 창의적 인재 육성, 융합교육 강화, 글로벌 과학기술 리더 양성, 교육인적 역량 강화 ○ Research: 우수 연구 과제 발굴 지원, 특성화된 연구인력 확보, 창업문화 선진화, 고부가가치 지적재산권 창출 및 기술이전/사업화 촉진, 선도적 대형과제 발굴 ○ Cooperation: 국제적 수준의 근무 환경 조성, 글로벌 리더십을 위한 다양한 협력 ○ Administration: 외국인 학생·교원 대상 행정·기술 서비스 제공(Bi-lingual Campus 운영 지원)						
성장 동력	○ Vision: 글로벌 가치창출 세계 선도대학(Global Value-Creative World-Leading University) - 지식창조형 글로벌 융합인재 양성 허브 (Hub for Fostering Knowledge Creation and Global Convergence Talents) - 세계적 신지식 신기술 창출 진원지(Center for the World-Leading New Knowledge and Technology) ○ 5대 혁신: 교육혁신, 연구혁신, 기술사업화혁신, 국제화혁신, 미래전략혁신 ○ 3C Leadership: Change(변화), Communication(소통), Care(돌봄)						
담당 업무	- 자연모사 마이크로 및 나노액적 충돌 거동 및 확산 억제 연구 - 호흡기 질환 예방 및 액적 확산 억제용 밀폐 챔버 개발 및 능동 유동 제어 관련 유동 가시화 연구						
직무수행 내용	- 자연모사 나노 표면에서 액적 충돌 거동 및 확산 분석 연구 - 액적 확산 예방을 위한 챔버 내부 유동 가시화 실험 연구 - 유동장 가시화 실험 연구 - 유동장 수치해석 연구						
필요지식	- 공학 > 기	- 공학 > 기계공학 > 유체역학					
필요기술	- 직무수행과 담당 업무를 성공적으로 수행할 수 있는 것에 관련된 기술						
직무수행태도	 ○ 새로운 연구 문제를 정의하고 분석하는 끈기 있는 연구 자세와 실제 문제 이해를 위해 이론 개발을 위한 창의적 태도 ○ 성공적 실험을 수행하고 문제를 분석하고 해결하려는 능력 및 의지 ○ 연구실 공동체 생활을 위한 단체 협력 연구를 하려는 직무 태도 						
직업기초능력	○ 문제해결능력, 대인관계능력, 직업윤리, 수리정보 능력						
참고사이트	www.ncs.go.kr, www.kaist.ac.kr						

한국과학기술원 NCS 기반 직무기술서 <연수연구원_신경보철>

			대분류	중분류	소분류	세분류			
채용분야	연수연구원_ 신경보철	분류체계	19.전기·전자	03.전자기기개발	09.의료장비제조	04.의료기기연구개발			
설립이념	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원								
KAIST 주요사업	○ 연구: 인·○ 국제화: †	○ 교육: 과학기술 글로벌 인재 양성○ 연구: 인류 난제 해결을 위한 연구○ 국제화: 글로벌 리더십 역량 강화○ 창업: 창업혁신 생태계 구축 및 발전							
성장 동력	○ Mission: ○ QAIST: さ	인류의 행복 당의인재, Pc	분, 지구를 위한 독특 류과 번영을 실현하는 ost AI 융복합 연구, e, Creativity, Caring	- 과학기술혁신대학 글로벌 인재, 기술기		리			
담당 업무	•	○ 뇌질환(파킨슨, 치매 등)모델 동물실험에서 이식형 마이크로 전극 및 코일을 이용한 전기/자기장 뇌 자극 효과 연구							
직무수행 내용	○ 뇌조직(뇌슬라이스) 신경신호 기록(패치클램프/칼슘이미징) 및 전기/자기장 신경자극 성능평가 ○ 소형·중형 동물실험에서 전극/코일 뇌이식수술 및 장기간 신경신호기록/행동반응 실험 수행 ○ 논문 작성 ○ 과제 보고서 작성 및 관리								
필요지식	○ 마이크로/나노 반도체 공정을 이용한 이식형 신경전극 제작에 관한 전반적인 지식 ○ 이식형 전극을 이용한 신경신호 기록 및 신경자극 기술에 관한 전반적인 지식 ○ 이식형 전자장치를 이용하는 뇌-컴퓨터 인터페이스 및 신경보철장치(인공와우, 인공망막, 심부뇌자극 시스템)에 관한 전반적인 지식								
필요기술	○ 뇌조직(뇌슬라이스) 신경자극 및 신경신호 기록(패치클램프, 멀티채널신경기록, 칼슘이미징) 기술 ○ 소형동물(마우스, 랫) 실험에서 전극 뇌 이식수술 및 다채널 신경신호기록/칼슘이미징 기술 ○ 신경신호 및 칼슘이미징 데이터 분석 소프트웨어 (LabView, Matlab, ImageJ 등) 사용 경험								
직무수행태도	○ 성실하고 능동적인 연구자세 및 연구 윤리 준수 ○ 창의적이고 객관적인 사고 노력, 주인의식 및 책임감 있는 태도								
직업기초능력	○ 의사소통능력: 문서이해능력, 문서작성능력, 의사표현능력 ○ 수리능력: 도표분석능력, 도표작성능력 ○ 문제해결능력: 사고력, 문제처리능력 ○ 기술능력: 기술이해능력, 기술선택능력, 기술적용능력								
참고사이트	www.ncs.go	o.kr, www.ka	aist.ac.kr						

위촉연구원

한국과학기술원 NCS 기반 직무기술서 <위촉연구원_바이오>

	위촉연구원_		대분류	중분류	소분류	세분류			
채용분야	바이오	분류체계	화학·바이오	바이오	바이오의약	첨단바이오의약품개발			
설립이념	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원								
KAIST 주요사업	ResearchCooperat	○ Education: 창의적 인재 육성, 융합교육 강화, 글로벌 과학기술 리더 양성, 교육인적 역량 강화 ○ Research: 우수 연구 과제 발굴 지원, 특성화된 연구인력 확보, 창업문화 선진화, 고부가가치 지적재산권 창출 및 기술이전/사업화 촉진, 선도적 대형과제 발굴 ○ Cooperation: 국제적 수준의 근무 환경 조성, 글로벌 리더십을 위한 다양한 협력 ○ Administration: 외국인 학생·교원 대상 행정·기술 서비스 제공(Bi-lingual Campus 운영 지원)							
성장 동력	- 지식창: (Hub fo - 세계적 ○ 5대 혁신	 ○ Vision: 글로벌 가치창출 세계 선도대학(Global Value-Creative World-Leading University) - 지식창조형 글로벌 융합인재 양성 허브 (Hub for Fostering Knowledge Creation and Global Convergence Talents) - 세계적 신지식 신기술 창출 진원지(Center for the World-Leading New Knowledge and Technology) ○ 5대 혁신: 교육혁신, 연구혁신, 기술사업화혁신, 국제화혁신, 미래전략혁신 ○ 3C Leadership: Change(변화), Communication(소통), Care(돌봄) 							
담당 업무	○ 분자세포 ○ 생물 실험	○ 세포 질병 모델 구축을 위한 다양한 세포의 배양 ○ 분자세포생물학 분석을 통한 세포 특성 정량화 ○ 생물 실험에 필요한 다 종의 세포 및 생화학 시료의 관리 ○ Cell culture, PCR, western blotting, fluorescence imaging 등 다양한 분자세포생물학적인 분석							
직무수행 내용	• – .	○ 상기 업무에서의 연구 실험 관리 및 연구 협업 ○ Cell Biology, Molecular Biology 관련 전 분야							
필요지식	○ 세포 배양 및 생물 실험에 대한 기본적 지식○ 분자세포생물학 분석에 대한 지식○ 체외 줄기세포 배양 관련 지식○ 질병 모델 연구에대한 지식								
필요기술	○ 다양한 종류의 세포 배양에 대한 기술 ○ PCR, western blotting을 비롯한 분자세포생물학적 분석 기법 기술 ○ 세포 Transfection 기술을 구비할 시 우대 ○ 세포 및 생화학 시료 안전관리에 대한 기술								
직무수행태도		○ 새로운 기술을 배우고 적용하는 시도 ○ 적극적인 태도로 주어진 문제를 해결하고자 하는 능력							
직업기초능력	○ 의사소통	의사소통능력, 문제해결능력, 자원관리, 자기계발, 대인관계, 직업윤리							
참고사이트	www.ncs.go	www.ncs.go.kr, www.kaist.ac.kr							

한국과학기술원 NCS 기반 직무기술서 <위촉연구원_전자(반도체)>

			대분류	중분류	소분류	세분류		
채용분야	대용분야 위촉연구원_ 전자(반도체)	분류체계	19. 전기 전자 03.	03.전자기기개발	06.반도체개발	01.반도체개발		
						03.디지털회로설계		
	○ 한국과학 - 길이 9	-	식제전이 응용련 이	로 군가 사언 박저어	l 기여 한 고근 고	하기숙 이재 양성		
설립이념	- 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여 할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행							
	- 각 분0	- 각 분야 연구 기관 및 산업계와 연계한 연구 지원						
			벌 인재 양성					
KAIST 주요사업			불을 위한 연구 십 역량 강화					
1 - 1 - 1			계 구축 및 발전					
	_			한 빛깔의 세계 10위				
성장 동력				- 과학기술혁신대학 글로벌 인재, 기술기		시리		
		,	st Ar 용독급 현 F, e, Creativity, Caring	.,	[시၀호, ㅗᅙᅴ î	<u></u>		
	○ 칩 설계	및 EDA Too	ol 분야 기술지원 (공	공정 관리 및 강의	등)			
담당 업무 ○ 교육장 실습 환경 관리 (툴 설치 및 라이센스 셋업)								
	○ 기타 - 박	○ 기타 - 반도체 설계 인력 양성을 위한 제반 업무						
지디스체		•	[계에 필요한 기술자 요합 기소자의	원 및 공정 운영				
직무수행 내용								
	○ 반도체 설계 교육에 필요한 Tool 설치 등 환경 셋업							
필요지식	○ Synopsys, Cadence, Siemens EDA Tool 활용							
24/17	○ 반도체 실	○ 반도체 설계 및 칩제작 과정의 이해						
III O ZI A	Synopsys	, Cadence,	Siemens EDA Tool	에 대한 설치 및 사	용 경험자 우대			
필요기술	○ 칩 설계							
	○ 현상의 원	원인을 파악,	문제 해결 의지					
직무수행태도	○ 학생들을 대상으로 하므로 부드러운 말투와 친절한 태도							
	○ 상호 업무 협조 노력과 요구사항을 적극 수용하고자 하는 태도 ○ 투명하고 공정한 청렴한 태도							
직업기초능력	○ 반도체설계 관련 학과 전공자 ○ 의사통능력, 문제해결능력, 자원관리능력, 직업윤리, 정보 및 기술 능력							
참고사이트	www.ncs.go	o.kr, www.ka	aist.ac.kr					

한국과학기술원 NCS 기반 직무기술서 <위촉연구원_전산>

	위촉연구원_ 전산 분투		대분류	중분류	소분류	세분류		
채용분야		분류체계	*20. 정보기술	*01.정보기술	*07.인공지능	*03.인공지능모델 링		
설립이념	- 깊이 있 - 국가 정	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원						
KAIST 주요사업	○ 연구: 인력○ 국제화: 함	○ 교육: 과학기술 글로벌 인재 양성 ○ 연구: 인류 난제 해결을 위한 연구 ○ 국제화: 글로벌 리더십 역량 강화 ○ 창업: 창업혁신 생태계 구축 및 발전						
성장 동력	○ Mission: ○ QAIST: 청	 ○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring 						
담당 업무	○ 알고리즘	○ 체계적 일반화가 가능한 모델 관련자료 조사 및 정리 ○ 알고리즘 개발 및 분석 ○ 문서 작업 업무						
직무수행 내용	○ 월드모델 설계 및 구축○ 체계적 일반화에 관한 연구개발○ 데이터 전처리 및 분석							
필요지식		○ 월드 모델에 관한 전반적인 지식과 최근 동향 (RSSM, S4 World Model 등) ○ 비전 도메인에서의 체계적 일반화와 관련된 기존 연구들						
필요기술	○ 딥러닝 프레임워크(Pytorch)를 활용한 모델 구현 ○ 이미지/비디오 데이터 생성 및 전처리 기술							
직무수행태도	○ 문제 정의 및 문제 해결에 끈기 있는 연구 자세로 참여 하는 태도 ○ 원활한 공동 연구 진행을 위한 단체 협력 태도							
직업기초능력	○ 의사소통능력, 대인관계능력, 조직이해능력, 직업윤리 ○ 문제해결능력, 정보능력, 수리능력							
참고사이트	www.ncs.go	www.ncs.go.kr, www.kaist.ac.kr						

한국과학기술원 NCS 기반 직무기술서 <위촉연구원_IT(전산)>

	위촉연구원_ IT(전산)	분류체계	대분류	중분류	소분류	세분류			
채용분야			20.정보통신	01.정보기술	02.정보기술개발	02.응용SW엔지니 어링			
설립이념	- 깊이 있 - 국가 정	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원							
KAIST 주요사업	○ 연구: 인후○ 국제화: †	○ 교육: 과학기술 글로벌 인재 양성 ○ 연구: 인류 난제 해결을 위한 연구 ○ 국제화: 글로벌 리더십 역량 강화 ○ 창업: 창업혁신 생태계 구축 및 발전							
성장 동력	○ Mission: ○ QAIST: さ	 ○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring 							
담당 업무	○ PLC(Programmable Logic Controller) 소프트웨어 신뢰도 측정 도구 프로토타입 개발 ○ PLC 소프트웨어 신뢰도 측정 도구 품질에 대한 정량적 평가								
직무수행 내용	○ 사례 PLC ○ PLC 소프	 ○ PLC 소프트웨어 신뢰도 측정 도구 프로토타입 개발 ○ 사례 PLC 소프트웨어 대상 프로토타입 도구 활용 사례 연구 ○ PLC 소프트웨어 신뢰도 측정 도구 품질에 대한 정량적 평가 ○ PLC 소프트웨어 신뢰도 측정 도구 프로토타입 개선 							
필요지식		○ 소프트웨어 신뢰도(reliability) 및 시험(testing)에 대한 기본 개념 ○ 소프트웨어 품질에 대한 기본 개념							
필요기술	○ 소프트웨어 도구 설계 기술 ○ 소프트웨어 시험 설계 및 실행 기술 ○ 소프트웨어 개발 관련 문서화 기술								
직무수행태도	○ 객관적인 판단 및 논리적인 분석 태도 ○ 문제해결에 적극적인 의지 ○ 다른 연구원들과 능동적으로 협력하는 자세								
직업기초능력	○ 문제해결	○ 문제해결능력, 정보 습득 및 분석 능력, 의사소통 능력, 대인관계능력							
참고사이트	www.ncs.go.kr, www.kaist.ac.kr								