본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%BA%98%EB%A6%AC%ED%8F%AC%EB%8B%88%EC%95%84
최신순
조회순
기후정책의 숨겨진 위험 규명, 탄소 줄고 독성물질 40% 증가 밝혀
2013년부터 시행된 미국 내 최대 규모의 온실가스 감축 정책으로 캘리포니아주의 탄소배출권 거래제도*가 있다. KAIST와 국제공동연구진은 이 제도가 예상치 못한 환경부작용을 초래하며 기업들의 독성물질 배출을 최대 40% 증가시켰다는 점을 처음으로 밝혀냈다. *탄소배출권 거래제도(Cap and Trade Program): 온실가스 배출 총량 상한(cap)을 설정하고 이를 기업들에게 자체 감축 노력을 통해 배출을 줄이거나 거래(trade)할 수 있는 제도임 우리 대학 기술경영학부 이나래 교수가 미네소타 주립대 아심 카울(Aseem Kaul) 교수와 공동연구를 통해서, 탄소배출권 거래제도가 온실가스 감축에는 기여했지만, 예상치 못한 또 다른 환경 문제를 유발할 수 있다는 점을 실증적으로 밝혔다. 탄소배출권 거래 제도는 시장 원리를 활용해 비용 효율적으로 온실가스를 줄이고, 동시에 경제적 유인을 제공함으로써 지속적인 환경 개선을 도모하는 것이 목적으로 만들어졌다. 연구팀은 2010년부터 2018년까지 대형 제조시설에서 발생한 온실가스 및 유해물질 배출량 데이터를 분석했다. 그 결과 탄소배출권 제도의 적용을 받은 시설들이 온실가스를 줄이기 위해 유해폐기물 처리 활동을 축소하면서, 기업에서는 오히려 환경이나 인체에 유해한 납, 다이옥신, 수은 등 독성물질 배출이 최대 40%까지 증가한 사실을 확인했다. 심층 분석을 통해, 이러한 부작용이 환경 감시가 활발한 지역이거나 공정 단계에서 근본적으로 독성 물질 생성을 줄이는 환경 기술을 도입한 기업에서는 상대적으로 덜 나타났다는 사실도 밝혀냈다. 이는 기업들이 규제 비용과 외부 감시의 정도에 따라 환경 대응 전략을 선택적으로 조정하고 있음을 시사한다. 이나래 교수는 “탄소 감축 제도는 탄소의 발생량 자체를 규제하는 정책이기 때문에, 기업들이 탄소를 줄이는 데 집중하면서 상대적으로 다른 환경 부문을 희생하는 현상이 나타났다. 하지만 보다 근본적인 환경 기술을 이전에 도입한 기업들은 이러한 부작용이 덜했다”고 설명했다. 이어 “이번 연구는 기후변화 대응을 위한 정책이 또 다른 환경 문제를 초래할 수 있다는 점을 보여주며 사회적 목표 간의 상충(trade-off)을 정교하게 고려한 정책 설계가 필요하다”고 강조했다. 이번 연구는 기술경영학부 이나래 교수가 제1 저자로 참여하였고, 경영학 분야 최고 권위 학술지인 매니지먼트 사이언스(Management Science)에 4월 22일 자로 게재되었다. ※ 논문명 : Robbing Peter to Pay Paul: The Impact of California’s Cap-and-Trade Program on Toxic Emissions https://doi.org/10.1287/mnsc.2023.03560 한편, 이번 연구는 KAIST의 오픈 액세스(Open Access) 출판 지원을 통해 논문 전체를 누구나 무료로 열람할 수 있도록 하였으며, 이에 따라 연구 결과가 학계와 정책 현장에서 더욱 폭넓게 활용될 것으로 기대된다.
2025.05.09
조회수 572
양찬호 교수, 전기적 위상 결함 제어기술 개발
〈 양 찬 호 교수, 김 광 은 박사과정 〉 우리 대학 물리학과 양찬호 교수 연구팀이 강유전체 나노구조에서 전기적인 위상 결함을 만들고 지울 수 있는 기술을 개발했다. 이 기술을 통해 전기적 위상 결함 기반의 저장 매체를 개발한다면 대용량의 정보를 안정적으로 저장할 수 있을 것으로 기대된다. 이번 연구는 포스텍 최시영 교수, 포항 가속기연구소 구태영 박사, 펜실베니아 주립대학 첸(Long-Qing Chen) 교수, 캘리포니아 대학 라메쉬 교수 등과 공동으로 수행됐다. 김광은 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 26일자에 게재됐다. 위상학은 물체를 변형시켰을 때 물체가 가지는 성질에 대한 연구를 하는 학문으로, 원과 삼각형은 위상학적으로 동일한 물질이라고 할 수 있다. 2016년도 노벨 물리학상 발표 기자회견에서 노벨위원회는 위상학의 개념을 구멍이 한 개 뚫린 베이글 빵, 구멍이 없는 시나몬 빵, 유리컵 등에 비유했다. 시나몬 빵과 유리컵은 다르게 보이지만 구멍이 없다는 점만 따지면 위상학적으로 같은 물질이 된다. 하지만 구멍의 개수가 다른 베이글과 시나몬 빵은 위상학적으로 다른 물질이 되는 식이다. 즉 물질에서 위상학적이라 함은 연속적인 변형으로는 그 특성을 변화시킬 수 없는 절대적인 보존량을 말한다. 이러한 위상학적 특징을 이용해 정보저장 매체를 만들면 외부의 자극으로부터 보존되며 사용자의 의도대로 쓰고 지울 수 있는 이상적인 비휘발성 메모리를 제작할 수 있다. 강유전체와 달리 강자성체(자기적 균형이 깨진 상태, 외부 자기장을 제거해도 자기장이 그대로 남아있음)의 경우는 소용돌이 형태의 위상학적 결함 구조가 이미 구현됐다. 반면 외부 전기장 없이도 스스로 분극을 갖는 강유전체는 자성체에 비해 위상학적 결함 구조를 더 작은 크기로 안정시키고 더 적은 에너지를 이용해 조절할 수 있다는 장점이 있음에도 불구하고 초보적인 연구 단계에 머물러 있었다. 실험적으로 위상학적 결함 구조를 어떻게 안정화시키며 어떠한 방식으로 조절할 것인지에 대한 연구가 부족했기 때문이다. 연구팀은 문제 해결을 위해 강유전체 나노구조에서 비균일한 변형을 줘 위상학적 결함 구조를 안정시키는 데 성공했다. 연구팀은 강유전체 나노접시(ferroelectric nanoplate) 구조를 특정 기판 위에 제작해 접시의 바닥면에는 강한 압축 변형을 주는 동시에 옆면과 윗면은 변형에서 자유로운 구조를 만들었다. 이러한 구조는 방사형으로 압축변형 완화(Compressive strain relaxation)가 일어나 격자의 변형이 오히려 강유전체의 소용돌이 구조를 안정화시키게 된다. 연구팀은 이번 연구가 고밀도, 고효율, 고안정성을 갖춘 위상학적 결함기반 강유전 메모리에 핵심적인 원리를 제시했다고 말했다. 양 교수는 “강유전체는 부도체이지만 위상학적 강유전 준입자가 국소적으로 전자 전도성을 수반할 수 있어 새로운 양자소자 연구로 확대될 수 있을 것이다”고 말했다. 이번 연구는 한국연구재단의 창의연구지원사업, 선도연구센터지원사업, 글로벌프론티어사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 전기적 위상 결함 개수를 조절하여 만든 5가지의 다른 위상 구조
2018.02.08
조회수 33486
김일두 교수, 7초 안에 수소가스 탐지 가능한 센서 개발
〈 김일두 교수, 구원태 학생, 페너 교수 〉 우리 대학 신소재공학과 김일두 교수 연구팀이 美 캘리포니아 대학 어바인 캠퍼스 화학과 페너(Reginald M. Penner) 교수와의 공동 연구를 통해 대기 중 1% 수준 농도의 수소가스를 상온에서 7초 이내에 검출할 수 있는 초고속 센서를 개발했다. 이 기술은 금속유기구조체(metal-organic framework)가 코팅된 팔라듐(Pd) 나노와이어 어레이(array) 기반의 초고속 수소가스 감지소재로 향후 수소 자동차 등 다양한 분야에서 활용 가능할 것으로 기대된다. 구원태 박사과정이 1저자로 참여한 이번 연구는 재료분야의 권위 학술지 ‘에이씨에스 나노(ACS Nano)’ 9월호 표지 논문에 선정됐다. 수소가스는 친환경 차세대 에너지원으로 주목받지만 작은 스파크(spark)에도 폭발을 일으킬 수 있는 위험한 가연성 물질이다. 수소가스의 폭발 하한계는 대기 중 4%로 무색, 무취의 수소가스를 빠르게 검출할 수 있는 센서의 중요성이 커지고 있다. 미국 에너지부는 2009년 국가 과제 공고에서 대기 중 1% 수소가스를 60초 이내에 감지할 수 있고 60초 이내에 회복하는 수준이 안전한 수소가스의 검출 기준이라고 제시했다. 1960년대 팔라듐과 수소가스 간 반응시 저항변화가 생기는 현상이 발견된 이후, 팔라듐 기반의 초고감도, 초고속 수소가스 센서 개발을 위한 노력이 계속됐다. 그러나 공기 중 산소를 포함한 방해 가스의 영향으로 상용화 수준의 성능을 갖추지 못했다. 김 교수 및 페너 교수 연구팀은 상온에서 수백 ppm(part per million, 백만분의 1) 수준의 극미량 수소가스를 정밀하고 신속하게 감지할 수 있는 초고감도 감지 소재를 개발했다. 연구팀은 기존 팔라듐 센서의 한계를 극복하기 위해 수소의 선택적 투과가 가능한 금속유기구조체를 팔라듐 나노와이어 어레이 위에 결합했다. 이 금속유기구조체는 각각 0.34 나노미터와 1.16 나노미터의 아주 작은 구멍들로 구성된 표면적이 매우 높은 다공성 물질이다. 수소는 상온에서 0.289 나노미터의 운동지름(kinetic diameter, 다른 분자와 충돌을 일으킬 수 있는 동역학적 지름)을 갖기 때문에 0.34 나노미터의 구멍보다 작아 금속유기구조체 내부를 쉽게 통과할 수 있다. 하지만 0.34 나노미터보다 큰 가스들은 금속유기구조체 내부를 투과하기 어렵다. 이 원리를 통해 수소가스만을 선택적으로 투과하는 데 성공했고, 더불어 팔라듐 나노와이어와 수소가스의 반응을 촉진시켜 초고속으로 수소가스를 감지할 수 있음을 확인했다. 김 교수는 “개발된 초고속 수소가스 센서는 친환경 에너지원인 수소가스의 누출로 인한 사고 예방에 큰 도움을 줄 것이다”며 “금속유기구조체 기반 분자 필터링 기술을 활용해 대기 중 수많은 유해 가스를 초고성능으로 정확히 감지할 수 있는 고속 센서 소재 개발이 가능해 졌다”고 말했다. □ 그림 설명 그림1. 2017. ACS Nano, 커버 이미지 그림2. Pd 나노와이어 어레이 이미지 및 금속유기구조체가 코팅된 Pd 나노와이어의 주사전자현미경 이미지, 그리고 개발된 소재의 수소 가스 감지 특성 그림3. 수소가스 탐지 센서 모식도(ACS Nano에 게재된 논문의 대표 이미지)
2017.09.26
조회수 15384
단백질 나노튜브의 자기조립 분자스위치 발견
- 한국, 미국, 이스라엘 국제 공동 연구 성과 - - 암 치료와 뇌 질환 메커니즘 단서 - 우리 학교 바이오및뇌공학과 최명철 교수와 송채연 연구교수는 미국 산타바바라 캘리포니아대학교, 이스라엘 히브리대학교와 공동으로 세포분열과 세포간 물질수송에 열쇠가 되는 단백질 나노튜브의 자기조립 구조를 제어하는 분자스위치를 발견했다. 연구 결과는 세계적 학술지 ‘네이처 머티리얼즈(Nature Materials, IF=35.7)’ 19일자에 게재됐다. 마이크로튜불(microtubule, 미세소관)은 사람의 몸속에서 세포분열·세포골격·세포간 물질수송 도구로 사용되는 튜브 형태의 단백질로 굵기가 25나노미터(1나노미터는 머리카락 굵기의 10만분의 1)에 불과하다. 대부분의 암 치료 약물은 마이크로튜불의 형성을 교란해 암세포 분열을 억제하는 것으로 작용 메커니즘이 알려져 있다. 알츠하이머병은 세포간 물질수송을 담당하는 마이크로튜불의 구조적 안정성이 떨어지면서 신경세포에서의 신호전달이 제대로 이루어지지 않아 생기는 대표적 뇌질환이다. 연구팀은 싱크로트론 X선 산란장치(synchrotron x-ray scattering: 전자를 빛의 속도에 가깝게 가속시켜 강력한 X선을 발생시키는 장치)와 투과전자현미경을 이용해 단백질 나노튜브의 자기조립 구조를 서브나노미터(1나노미터 미만)의 정확도로 측정했다. 연구팀은 이번 연구를 분자 레벨에서 레고 블록을 쌓아 올리는 것에 비유해 가로×세로×폭이 각각 4×5×8 나노미터인 단백질 블록을 쌓아 올려 25나노미터 굵기의 튜브를 형성하는 메커니즘을 추적했다. 이 과정에서 연구팀은 레고 블록의 형태를 제어하는 분자스위치를 발견했다. 또 지금까지 보고된 바 없는 전혀 새로운 크기와 형태의 단백질 튜브 구조를 만들어 내는데 성공했다. 최명철 교수는 “인간의 생명 시스템은 고도의 자기조립 구조체를 형성해 복잡한 생물학적 기능을 하고 있지만 한편으로는 극히 단순한 물리학적 원리에 의해 제어가 가능하다는 새로운 패러다임을 제시했다”고 이 연구의 의의를 밝혔다. 또 “이번 연구는 암 치료와 뇌질환 메커니즘을 규명하고자하는 작은 발걸음이며 앞으로 바이오 나노튜브를 이용한 공학적 응용이 무궁무진할 것으로 기대한다”고 말했다. 이번 연구는 한국연구재단의 국제협력사업, 신진연구자지원사업, 학문후속세대양성사업, KAIST 고위험 고수익 프로젝트(High Risk High Return Project)의 지원으로 수행됐다.
2014.01.21
조회수 23898
그래핀 반도체 개발 난제 풀었다!
- 톱니모양 게이트 전극 이용해 그래핀 트랜지스터 스위칭 효율 극대화 -- 그래핀의 높은 전하 이동도 기반한 매우 빠른 논리 소자 구현 가능 - 그래핀을 이용해 속도가 매우 빠른 반도체 만들 수 있는 가능성이 높아졌다. 우리 학교 EEWS대학원 김형준 교수와 윌리엄 고다드 교수가 공동으로 그래핀을 이용한 트랜지스터의 온오프 스위칭 효율을 극대화 할 수 있는 방법을 제시했다. 연구 결과는 자연과학분야의 권위 있는 학술지 ‘미국립과학원회보(PNAS)’ 5월 13일자 온라인판으로 게재됐다. 그래핀은 전자 이동속도가 실리콘에 비해 100배 높기 때문에 반도체 소자로 응용했을 경우 컴퓨터의 속도가 매우 빨라질 수 있다. 이러한 장점 덕분에 그래핀은 기존의 실리콘을 대체할 차세대 반도체 소재로써 각광을 받고 있다. 그러나 그래핀의 원자구조 특성으로 인해 온오프 스위칭 효율이 매우 낮아 반도체 소재로 적용이 불가능했다. 최근 그래핀의 스위칭 특성을 높이기 위해 원자 구조를 변형시켜 밴드갭을 확보하는 방법이 제시됐지만 동시에 그래핀의 가장 큰 장점인 높은 전자 이동 속도가 급격히 낮아지는 문제점이 발생한다. 연구팀은 그래핀의 전자 이동 메커니즘이 빛의 전파 과정과 유사함에 착안했다. 김 교수 연구팀은 빛을 반사시키는 원리를 그래핀 전자에 적용, 게이트 전극을 톱니 모양으로 디자인했다. 이를 이용해 트랜지스터를 제작할 경우 스위칭 효율을 최대 100배 정도 높일 수 있음을 이론적으로 입증했다. 이 기술은 그래핀의 원자 구조를 변형시키지 않기 때문에 그래핀의 높은 전자이동 특성을 그대로 사용할 수 있다는 게 큰 특징이다. 이와 함께 기존 실리콘 기반 반도체와 유사한 구조를 갖고 있기 때문에 현재의 반도체 제작 공정을 그대로 응용할 수 있을 것으로 학계는 예상하고 있다. 김형준 교수는 이번 연구에 대해 “이론적으로 제안된 메커니즘을 실현한다면 그래핀을 활용한 연산 속도가 매우 빠른 차세대 컴퓨터 개발에 커다란 기여를 할 수 있을 것”이라고 말했다. 한편, 이번 연구는 KAIST EEWS 대학원 김형준 교수 및 윌리엄 고다드 교수와 고등과학원(KIAS) 손영우 교수, 그리고 미국 캘리포니아 공과대학(Caltech) 장민석 박사, 해리 애트워터 교수가 공동으로 연구를 수행했다. 그림1. 이번 연구에서 제안된 톱니 모양 게이트 구조를 가진 그래핀 트랜지스터 구조.
2013.05.22
조회수 18525
탄소나노튜브로 물이 스스로 빨려 들어가는 현상 원인 규명
- PNAS 발표, “효율성을 극대화한 차세대 해수 담수화막 활용 가능 기대”- 지금까지 현상만 알려졌을 뿐 그 원인이 정확히 설명되지 못했던, 물을 싫어하는 탄소나노튜브* 안으로 물이 스스로 빨려 들어가는 ‘반직관적 실험 현상’이 국내 연구진에 의해 규명되었다. *) 탄소나노튜브 : 각 탄소가 3개의 다른 탄소와 결합되어 있는 흑연의 탄소 원자 배열과 같은 모양(6각형의 벌집모양)을 가지면서, 원통형으로 말아서 튜브 형태로 만든 나노(10억분의 1미터) 구조체 우리 학교 EEWS 대학원 정유성 교수가 주도하고, 캘리포니아공대 윌리엄 고다드 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업의 지원(지속가능한 에너지 공학기술사업단)을 받아 수행되었다. 이번 연구결과는 자연과학분야의 권위 있는 학술지인 ‘미국립과학원회보(PNAS)’ 7월 19일자에 게재되었고, 한 주간에 흥미로운 연구결과들을 별도로 소개하는 "This Week in PNAS", ’C&EN News" 및 "Nature Materials"의 "Research Highlights"에 선정되는 영예를 얻었다. (논문명 : Entropy and the driving force for the filling of carbon nanotubes with water) 정유성 교수팀은 물을 싫어하는 탄소나노튜브 안으로 물이 스스로 빨려 들어가는 반직관적인 실험현상의 원인이 물 분자 간의 수소결합 때문으로, 나노채널과 같은 제한된 나노공간에서는 물의 무질서도가 증가하기 때문에 발생한다는 사실을 분자동력학 계산을 통해 밝혀냈다. 일반적으로 분자가 자유로운 액체 상태에서 제한된 나노 크기에 갇힐 경우, 무질서도와 화학결합이 감소되면서 불안정한 상태가 될 것으로 예상했지만, 연구팀은 탄소나노튜브에 갇힌 물의 경우 제한된 공간에서 물 분자 간의 수소결합이 약해지면서 밀도가 낮아지고, 오히려 무질서도가 증가하여 더욱 안정되는 특이한 현상을 나타낸다는 사실을 확인하였다. 특히 연구팀은 1.1과 1.2 나노미터의 지름을 갖는 나노튜브에서는 실온(섭씨 25도)임에도 불구하고 물이 얼음과 같은 구조를 띄는 현상도 관찰하였다. 정유성 교수는 “이번 연구는 계산과학이 실험측정만으로 설명하기 어려운 나노크기의 제한된 공간에서 나타나는 다양한 현상을 규명한 좋은 예”라고 정의하고, ‘’기존의 역삼투압 막에 비해 탄소나노튜브 내에서는 물의 수송속도가 현저히 빨라 에너지 효율적인 차세대 해수 담수화막을 효율적으로 설계하는데 기여할 것”이라고 연구의의를 밝혔다.
2011.07.27
조회수 18189
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1