본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%B5%EA%B3%BC%EB%8C%80%ED%95%99
최신순
조회순
AI 기반 효소 발굴하여 새로운 미생물 설계 가능
효소는 세포 내에서 일어나는 생화학적 반응을 촉매하는 단백질로, 세포의 대사 과정에서 핵심적인 역할을 수행한다. 이에 따라 새로운 효소의 기능을 규명하는 것은 미생물 세포공장 구축에서 핵심적인 과제다. KAIST 연구진이 인공지능(AI)을 활용해 자연에 존재하지 않는 새로운 효소를 설계함으로써, 미생물 세포공장 구축을 가속화하고 신약·바이오 연료 등 차세대 바이오산업의 개발 가능성을 크게 높였다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 AI를 활용한 효소 기능 예측 기술의 발전 과정과 최신 동향을 정리하고, AI가 새로운 효소를 찾고 설계하는데 어떤 역할을 해왔는지 분석하여 ‘인공지능을 이용한 효소 기능 분류’를 발표했다. 이상엽 특훈교수 연구팀은 이번 연구에서 머신러닝(Machine learning)과 딥러닝(Deep learning)을 활용한 효소 기능 예측 기술의 발전 과정을 체계적으로 정리·분석하여 제공했다. 초기의 서열 유사성 기반 예측 기법에서부터 합성곱 신경망, 순환 신경망, 그래프 신경망, 그리고 트랜스포머(Transformer) 기반 대규모 언어 모델까지 다양한 AI 기법이 효소 기능 예측 연구에 접목된 사례를 다루며, 이들 기술이 단백질 서열에서 의미 있는 정보를 어떻게 추출하고, 예측 성능을 극대화하는지를 분석했다. 특히, 딥러닝 기술을 활용한 효소 기능 예측은 단순한 서열 유사성 분석을 넘어, 구조적·진화적 정보 등 아미노산 서열에 내재된 효소의 촉매 기능과 관련된 중요한 특성을 자동으로 추출함으로써 보다 정밀한 예측이 가능하다는 점이 강조됐다. 이는 기존의 생명정보학적 접근법과 비교해 인공지능 모델이 가지는 차별성과 장점을 부각하는 중요한 부분이다. 또한, 생성형 인공지능 모델의 발전에 기반하여, 기존 효소 기능 예측을 넘어 자연계에 존재하지 않는 새로운 기능을 가진 효소를 생성하는 기술이 미래 연구 방향이 될 것으로 제시했다. 이러한 AI 기반 효소 예측 및 설계 기술의 지속적인 발전은 향후 바이오 산업과 생명공학 연구의 방향성에 큰 변화를 가져올 것으로 전망했다. 공동 제 1저자인 생명화학공학과 김하림 박사과정생은 “AI 기반 효소 기능 예측 및 효소 설계는 대사공학, 합성 생물학 및 헬스케어 등 다양한 분야에서 매우 중요”하다고 말했다. 이상엽 특훈교수는“AI 활용 효소 기능 예측은 다양한 생물학적 문제 해결에 효과적으로 적용될 수 있는 가능성을 보여주며 바이오 분야 전반의 연구를 가속화하는 데 크게 기여할 것.”이라고 밝혔다. 해당 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 저널인 `생명공학 동향(Trends in Biotechnology)'에 3월 28일자 게재됐다. ※ 논문명 : Enzyme Functional Classification Using Artificial Intelligence doi.org/10.1016/j.tibtech.2025.03.003 ※ 저자 정보 : 김하림(한국과학기술원, 공동 제1 저자), 지홍근(한국과학기술원, 공동 제1 저자), 김기배(한국과학기술원, 제3 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명 한편, 이번 연구는 과기정통부가 지원하는 석유 대체 친환경 화학기술 개발 사업의‘바이오 제조 산업 선도를 위한 첨단 합성 생물학 원천기술 개발’, 그리고 과기정통부와 보건복지부가 지원하는 ‘딥러닝 기반 합성 생물학을 이용한 혁신구조 항생제 개발’ 과제의 지원을 받아 수행됐다.
2025.04.17
조회수 335
뇌처럼 생각·반응하는 반도체 나왔다
뉴랜지스터(Neuransistor)는 ‘뉴런(Neuron) + 트랜지스터(Transistor)’의 합성어로 뇌의 뉴런 특성을 구현하는 트랜지스터라는 의미로 만들어진 새로운 용어이다. 이는 뇌 속 신경세포(뉴런)의 흥분과 억제 반응을 모방하여 시간에 따라 달라지는 정보를 스스로 처리하고 학습할 수 있는 차세대 인공지능 하드웨어의 핵심 반도체 소자다. KAIST 연구진이 뉴랜지스터의 개념을 제시하고 최초로 뉴랜지스터를 개발하는데 성공했다. 우리 대학 신소재공학과 김경민 교수 연구팀이 시간에 따라 변화하는 정보를 효과적으로 처리할 수 있는 액체 상태 기계(Liquid State Machine, 이하 LSM)*의 하드웨어 구현을 가능케 하는 뉴랜지스터 소자 개발에 성공했다. * 액체상태 기계(LSM): 생물학적 신경망의 동적 특성을 모사해, 시간에 따라 변화하는 입력 데이터를 처리하는 스파이킹 뉴럴 네트워크 모델 현재의 컴퓨터는 동영상과 같이 시간 흐름에 따라 변하는 데이터인 시계열 데이터를 분석하는데 복잡한 알고리즘을 사용하며, 이는 매우 많은 시간과 전력 소모를 필요로 했다. 김경민 교수 연구팀은 이러한 난제를 해결하며 뇌 속 뉴런처럼 흥분하거나 억제되는 반응을 전기 신호만으로 동시에 구현하여 시계열 데이터의 정보 처리에 특화된 단일 반도체 소자를 새롭게 설계했다. 해당 소자는 산화 티타늄(TiO2)과 산화 알루미늄(Al2O3)이라는 두 산화물층을 쌓아 만든 구조로, 두 층이 맞닿는 계면에서는 전자가 자유롭게 빠르게 이동하는 이차원 전자가스(2DEG)** 층이 형성된다. 그리고, 이 층의 양 끝에는 흥분성 및 억제성 신호에 모두 반응하는 뉴런형 소자가 연결되어 있다. **2DEG(Two-Dimensional Electron Gas): 계면에서 전도성이 우수한 전자 층이 형성되는 현상으로, 높은 이동도와 빠른 응답속도를 제공함 이러한 독특한 구조 덕분에 뉴랜지스터는 게이트 전압의 극성에 따라 소스와 드레인 간에 흥분성(EPSP) 또는 억제성(IPSP) 반응을 선택적으로 구현할 수 있다. 이 소자는 또한 기존 LSM 구현에서 필수적이었던 복잡한 입력 신호 전처리 과정(마스킹)도 간단히 해결했다. 기존에는 '마스킹' 기능 구현이 매우 복잡했으나, 뉴랜지스터는 소스 전극에 가해지는 전압을 조절함으로써 간단하게 마스킹 기능을 구현하고, 시계열 입력 신호를 다차원의 출력 정보로 정확하게 변환하였다. 또한, 높은 내구성과 소자 간의 균일성도 확보해 실용성도 역시 뛰어났다. 연구팀은 뉴랜지스터를 기반으로 복잡한 시계열 데이터를 처리하는 ‘두뇌형 정보처리 시스템’인 LSM을 구현하였다. 실험 결과, 뉴랜지스터를 활용하는 경우 기존의 방식보다 10배 이상 낮은 오차율과 높은 예측 정확도를 기록했고, 학습 속도도 더 빨라졌다. 김경민 교수는 “이번 연구는 인간 뇌의 신호 처리 방식과 유사한 구조를 실제 반도체 소자로 구현했다는 데 큰 의의가 있다”며 “이 기술은 향후 뇌신경 모사형 AI, 예측 시스템, 혼돈 신호 제어 등 다양한 분야에서 중요한 역할을 할 것으로 기대된다”고 전했다. 이번 연구는 신소재공학과 정운형 박사, 김근영 박사가 공동 제1 저자로 참여했으며, 재료 분야 세계적 권위의 국제 학술지 ‘어드밴스드 머터리얼즈(Advanced Materials, IF: 27.4)’에 2025년 4월 8일 字 게재됐다. (논문명: A Neuransistor with Excitatory and Inhibitory Neuronal Behaviors for Liquid State Machine, DOI: 10.1002/adma.202419122) 한편, 이번 연구는 나노종합기술원, 한국연구재단의 지원을 받아 수행됐다.
2025.04.16
조회수 694
‘구멍 개수가 자연수가 아닌 도넛’과 같은 ‘비양자화된 Zak 위상을 갖는 메타물질’ 개발
수학에서는 도형을 분류할 때 구멍(genus)의 개수를 기준으로 삼기도 한다. 예를 들어, 구멍이 하나 있는 도넛(torus)은 구멍이 없는 구(sphere)와는 구분되지만, 머그컵과는 같은 부류에 속한다. 구멍의 개수처럼 도형을 구부리거나 늘이는 연속적인 변형에도 변하지 않는 성질을 위상적 성질이라 하며, 위상수학에서는 이러한 성질을 기준으로 도형을 구분한다. 이와 유사하게, 음향 양자 결정(phononic crystal)도 파동 특성이 갖는 위상적 성질에 따라 분류가 가능하다. 예를 들어, 1차원 음향 양자 결정은 Zak 위상이 0인 구조와 π인 구조로 구분할 수 있다. 우리 대학 기계공학과 전원주 교수 연구팀이 메타물질의 파동적 특성 관점에서 “도넛 구멍의 개수가 꼭 자연수여야만 할까?"라는 질문을 바탕으로, 위상적 성질이 0이나 π로 양자화된 기존 분류 체계를 넘어, 0과 π 사이의 비양자화된 성질을 갖는 메타물질을 개발하였다. 이러한 비양자화된 위상적 성질의 도입은, 그동안 학계의 난제로 꼽히던 파장 대비 매우 작은 크기의 음향 양자 결정으로 파동 에너지를 제어하는 문제를 해결하는 데 중요한 실마리가 되었다. 더 나아가, 비양자화된 Zak 위상을 원하는 값으로 자유자재로 조정함으로써, 메타물질 내 집속되는 파동의 주파수를 조절할 수 있다. 이를 통해 목표 주파수의 파동을 제어하거나, rainbow trapping과 같이 파동 에너지를 주파수별로 원하는 위치에 집속할 수 있게 되었다 (그림 1(b) 참고). 전원주 교수 연구팀은 연구실 핵심 기술 중 하나인 ‘음향 블랙홀 기반의 포노닉 빔 설계 기술’을 위상 절연체(topologial insulator) 분야에 활용하여 연구 성과를 이끌어냈다. 전원주 교수는 “양자화된 Zak 위상 개념 위주로 연구되던 기존 메타물질 설계 방식을 넘어, 비양자화된 Zak 위상을 갖는 구조를 개발함으로써 주파수와 집속 위치 관점에서 파동에너지를 정밀하게 제어할 수 있게 되었다”며, “이번 연구에서 제시한 비양자화된 Zak 위상을 활용한 새로운 개념의 파동 집속 기술은 향후 초미세 진동 감지 센서, 고효율 에너지 하베스팅 장치 등 파동 집속이 필요한 다양한 공학적 응용으로 이어질 수 있을 것”이라고 말했다. 이번 연구는 박성민 박사과정(현, KAIST 기계기술연구소 연수연구원)이 제1저자로 참여했으며, 기계공학 분야 국제 학술지인 Mechanical Systems and Signal Processing (JCI 기준 상위 2.5%(5/183))에 4월 1일 게재되었다. ※ 논문명: Phononic crystals with non-quantized Zak phases for controlling interface state frequencies 한편, 본 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행되었다.
2025.04.14
조회수 1120
건설재료의 성능 평가를 위한 실험 자동화 시스템 개발
빅데이터와 인공지능 기반의 건설재료 품질관리 혁신 기술 제시 우리 대학 건설및환경공학과 김재홍 교수 연구팀은 시멘트 분산제의 성능을 정밀하게 평가할 수 있는 자동화 실험 시스템을 개발했다. 이 시스템은 기존 수작업 실험의 한계를 극복하고, 데이터 사이언스와 머신러닝 기법을 활용해 시멘트 기반 재료의 품질 관리를 혁신적으로 개선할 수 있는 길을 열었다. 건설재료 품질관리의 도전과제 콘크리트는 전 세계에서 가장 많이 생산되는 공학 재료지만, 시멘트와 골재 같은 원재료가 지역마다 성질이 달라 품질과 성능의 변동성이 크다. 따라서 콘크리트 재료의 성능 시험에는 많은 수의 샘플이 필요하며, 이는 노동 집약적인 작업으로 이어진다. 김재홍 교수는 "건설재료는 다른 공학 재료에 비해 변동성이 매우 크기 때문에, 재료의 성능평가 신뢰성을 높이려면 충분한 양의 데이터가 필요합니다. 이를 위해서는 많은 수의 샘플을 제조하고 테스트해야 하는데, 기존의 수작업 방식으로는 단순히 품질 검증을 위한 작은 수의 샘플을 사용하여 현장에서 불량 레미콘 등의 문제가 종종 발생하고 있습니다"라고 설명했다. 혁신적인 자동화 실험 시스템 연구팀이 개발한 자동화 실험 시스템은 230mL 모르타르 샘플의 레올로지 특성을 정밀하게 측정할 수 있다. 이 시스템은 시료 준비, 재료 혼합, 레올로지 측정 등의 과정을 모두 자동화하여 인력 투입 없이도 정확하고 일관된 데이터를 생산할 수 있다. 연구팀은 이 시스템을 사용해 130개의 모르타르 샘플을 분석하여 시멘트 분산제의 효과를 포괄적으로 특성화했다. 주성분 분석(PCA)을 통해 토크 측정값의 뚜렷한 패턴을 발견했으며, 이를 통해 패턴의 분산을 설명하고 분산제 성능 차이를 효과적으로 포착할 수 있었다. 특히 이 자동화 시스템은 7%의 변동 계수로 우수한 재현성을 달성했으며, 이는 재료의 고유한 변동성으로 간주될 수 있다. 또한 관찰 기반 학습을 통해 시스템의 유용성을 확장하여 유동성과 블리딩 속도를 성공적으로 예측할 수 있었다. 이 내용은 건설공학 분야에서 권위 있는 학술지인 Cement and Concrete Research에 "Automated experimentation for evaluating cement dispersant performance"라는 제목으로 게재되었다. (https://doi.org/10.1016/j.cemconres.2025.107895) 연구 결과 및 향후 계획 연구 결과는 3세대 시멘트 분산제의 우수한 성능을 확인하는 동시에, 분산제 사용량-레올로지 관계에 대한 통합적인 분석을 제시하였다. 이러한 자동화 실험 방식은 시멘트 기반 재료의 더 효율적이고 포괄적인 평가를 위한 프레임워크를 확립했다는 데 의의가 있다. 김재홍 교수는 "이번 연구에서 개발한 자동화 실험 시스템은 단순히 실험 과정을 자동화하는 것을 넘어, 데이터 사이언스와 머신러닝을 통합하여 건설재료의 품질관리 패러다임을 변화시킬 수 있는 잠재력을 가지고 있습니다"라고 강조했다. 한편, 연구팀은 건설재료의 성능 평가를 위한 자동화 실험 시스템 개발에 앞서, 건설재료의 특성에 적합한 머신러닝 알고리즘을 개발하였다. KAIST 건설및환경공학과/데이터사이언스대학원 강인국 박사과정이 제1저자로 참여한 관찰 기반 학습(observation-based learning), 도메인 적응(domain adaptation) 학습 알고리즘 등에 관한 연구는, 건설공학 분야에서 권위 있는 학술지인 Cement & Concrete Composites 등에 게재되었다. (https://doi.org/10.1016/j.cemconcomp.2025.105943, https://doi.org/10.1016/j.conbuildmat.2023.133811). 연구팀은 앞으로 이 자동화 시스템을 확장하여 시멘트 분산제 성능 평가뿐만 아니라 강도 발현, 수화열, 내구성 등 다양한 콘크리트 성능 지표에 대한 자동화 실험을 수행할 계획이다. 또한 해외건설 및 국내건설 현장의 건설재료 변동성으로 인한 시공실패를 사전에 예측하고 방지하기 위한 성능평가 실험 자동화 및 로봇 플랫폼을 확장 구축할 예정이다. 김 교수는 "궁극적으로 우리의 목표는 건설산업에서 전문 테크니션 부족 문제, 기능인력 노령화 문제, 주52시간제 시행 등에 대응하기 위한 건설재료 품질관리 및 성능평가의 완전한 자동화 시스템을 구축하는 것입니다. 이를 통해 데이터 기반의 의사결정이 가능한 스마트 건설 환경을 조성하고자 합니다"라고 밝혔다. 이 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었다.
2025.04.14
조회수 505
면역항암 막는 핵심인자‘최초 발견’폐암 치료 새 길 열어
우리 몸의 면역세포가 암세포를 더 잘 공격할 수 있게 도와주는 면역관문억제제(면역항암치료)의 개발은 암 치료의 획기적인 도약을 불러왔다. 반면 실제로는 전체 환자의 20% 미만만이 반응하므로 면역항암치료에 반응하거나 비반응 환자를 위한 새로운 치료전략이 절실한 상황이다. 우리 대학 연구진은 면역항암치료를 방해하는 핵심인자(DDX54)를 최초로 발굴하여 폐암 치료의 새 길을 열었다. 이 기술은 교원창업기업 바이오리버트(주)로 기술이전되어 면역항암치료제의 실제 동반치료제로 개발 중이며 2028년 임상진행 예정이다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 폐암세포의 면역회피능력을 결정짓는 핵심인자(DDX54)를 발굴하는데 성공하였고, 이를 억제할 경우 암 조직으로의 면역세포 침투가 증가해 면역항암치료 효과가 크게 개선된다는 사실을 입증했다. 면역항암치료(Immunotherapy)는 면역세포의 공격을 도와주는 항PD-1(anti-PD-1) 또는 항PD-L1(anti-PD-L1) 항체를 이용한 뛰어난 치료법이다. 하지만 면역항암치료의 반응률이 낮아 실제 치료 혜택을 받는 환자군이 극히 제한적이었다. 이에 반응할 가능성이 높은 환자를 선별하기 위한 바이오마커 연구로 최근 종양돌연변이부담(Tumor Mutational Burden, TMB)이 FDA에서 면역항암치료의 주요 바이오마커로 승인되었다. 즉, 유전자 돌연변이가 많이 생긴 암일수록 면역항암치료에 반응할 가능성이 높다는 것이다. 그러나 TMB가 높아도 면역세포의 침윤이 극도로 제한되는 소위 ‘면역사막(Immune-desert)' 형태의 암이 여전히 다수 존재한다는 것이 밝혀졌으며 이 경우 면역항암치료 반응 또한 매우 낮은 것으로 보고되고 있다. 이번 연구성과는 특히 면역세포 침윤이 매우 낮은 폐암 조직을 대상으로, 발굴한 핵심인자를 억제함으로써 면역관문억제제를 활용한 면역항암치료의 내성을 극복할 수 있음을 확인한 것이다. 조광현 교수 연구팀은 면역회피가 발생된 폐암 환자 유래 전사체 및 유전체 데이터로부터 시스템생물학 연구를 통해 유전자 조절네트워크를 추론하고 이를 분석해 폐암세포가 면역회피능을 획득하는 핵심 조절인자를 찾아냈다. 그리고 이 핵심인자를 동종(Syngeneic) 폐암 마우스 모델에서 억제한 뒤 면역항암치료 반응성을 조사한 결과, T 세포, NK세포 등 항암 면역세포의 조직 내 침윤이 크게 증가함과 동시에 면역항암치료 반응성도 현저히 높아진다는 것을 확인하였다. 아울러 세포 수준에서 유전자 발현을 분석하는 기술인 단일세포 전사체 분석 및 공간전사체 분석 결과, 발굴된 핵심인자를 제어하는 동반치료가 면역항암치료를 통해 암을 억제하는 효과를 가지는 T 세포와 기억 T 세포의 분화를 촉진하였다. 동시에, 암세포 성장을 돕는 조절 T 세포와 탈진된 T 세포의 침윤을 억제하는 효과가 있음이 확인되었다. 이는 발굴된 핵심인자의 억제가 폐암세포의 신호 전달 경로인 JAK-STAT, MYC, NF-κB 경로를 불활성화해 면역회피에 도움을 주는 단백질들 CD38과 CD47 발현을 억제하고, 이들 분자의 억제가 암 발달을 촉진하는 순환 단핵구(Circulating monocyte)의 침윤을 억제하는 한편 항암 기능을 수행하는 M1 대식세포(M1 macrophage)의 분화를 유도하기 때문인 것으로 분석되었다. 조광현 교수는 "폐암세포가 면역회피능력을 획득하게 하는 핵심조절인자를 처음으로 찾아내 이를 제어함으로써 면역회피능을 되돌려 면역항암치료에 반응하지 않던 암의 반응을 유도해 낼 수 있는 새로운 치료전략을 개발한 것이 주요 성과”라며 말했다. 이에 "암세포내 복잡한 분자네트워크에 숨겨진 핵심인자인 DDX54를 시스템생물학이라는 IT와 BT의 융합연구를 통해 체계적으로 발굴하고 실험검증할 수 있었다”고 그 의의를 강조했다. 이번 연구에는 KAIST 공정렬 박사(제1저자), 이정은 연구원(공동 제1저자), 한영현 박사가 참여했으며, 미국 국립과학원(National Academy of Sciences, NAS)에서 출간하는 국제 저널 ‘미국국립과학원회보 (PNAS, Proceedings of the National Academy of Sciences of the United States of America)'에 4월 2일자로 게재되었다. (논문 제목: DDX54 downregulation enhances anti-PD1 therapy in immune-desert lung tumors with high tumor mutational burden, DOI: https://doi.org/10.1073/pnas.2412310122) 본 연구는 과학기술정보통신부와 한국연구재단의 중견연구사업 및 기초연구실사업의 지원을 받아 수행되었다.
2025.04.08
조회수 979
235종 화학물질 친환경 생산 ‘세포공장 설계도’ 완성
기후 위기와 화석 연료 고갈은 전 세계적으로 지속 가능한 화학물질 생산의 필요성을 높이고 있다. 미국의 BioMADE (바이오메이드) 사업 등 바이오 제조 경쟁력 강화는 전 세계 중요한 국가 과제로 인식되고 있다. 우리 대학 연구진이 미생물 5종을 컴퓨터 시뮬레이션하여 산업에 가장 많이 쓰이는 바이오 연료, 플라스틱 등 원료가 되는 235가지 화학물질을 친환경적으로 생산하는데 성공하였고 상용화 가능성을 제시하여 주목받고 있다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 다양한 산업용 미생물 세포공장의 생산 능력을 가상 세포를 이용해 종합적으로 평가하고, 이를 토대로 특정 화학물질 생산에 가장 적합한 미생물 균주를 선정하고 최적의 대사 공학 전략을 제시했다. 미생물 세포 공장은 재생 가능한 자원을 활용하여 친환경적인 화학물질 생산 플랫폼으로 각광받고 있으며, 미생물을 개량하기 위한 대사공학 기술은 이러한 세포공장 생산 효율을 극대화하는 핵심 도구로 자리 잡고 있다. 그러나 미생물 세포 공장을 구축하기 위해 필요한 균주 선정의 어려움과 복잡한 대사 경로 최적화 등의 문제점은 실질적인 공정 적용에 큰 장애물로 작용하고 있다. 기존 연구에서는 방대한 생물 실험과 정교한 검증 과정을 통해 수많은 미생물 균주 중 최적의 균주와 효율적인 대사공학 전략을 도출하려 했으나, 이 과정은 막대한 시간과 비용이 소요되는 문제점이 있었다. 최근에는 미생물 전체 유전체 정보를 바탕으로 유기체 내 대사 네트워크를 재구성한 유전체 수준의 대사 모델을 이용한 컴퓨터 시뮬레이션으로 대사 흐름을 체계적으로 분석할 수 있게 됨에 따라, 기존의 생물 실험 한계를 극복하고 최적의 균주 선정 및 대사 경로 설계 문제를 혁신적으로 접근할 수 있는 새로운 가능성이 제시되고 있다. 이에 생명화학공학과 이상엽 특훈교수 연구팀은 대장균 (Escherichia coli), 효모 (Saccharomyces cerevisiae), 고초균 (Bacillus subtilis), 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum), 슈도모나스 푸티다 (Pseudomonas putida) 이상 5종의 대표적인 산업 미생물의 화학물질 생산 능력을 235가지 유용 물질을 대상으로 종합적으로 평가했다. 연구팀은 유전체 수준의 대사 모델을 이용하여 이들 미생물이 생산할 수 있는 화학물질의 최대 이론 수율과 실제 공정에서 달성 가능한 최대 수율을 계산하여 각 화학물질 생산에 가장 적합한 균주를 선정할 수 있는 기준을 마련하였다. 연구팀은 특히 타 생물에서 유래한 효소 반응을 미생물에 도입하거나, 미생물이 사용하는 보조인자를 교환하여 대사 경로를 확장하는 전략을 제안했다. 이러한 전략을 통해 기존 미생물의 선천적 대사능력을 초과하는 수율 향상이 가능함을 확인했으며, 메발론산, 프로판올, 지방산, 아이소프레노이드와 같은 산업적으로 중요한 다양한 화학물질의 생산 수율이 증가했다. 또한 연구팀은 가상세포 내 대사흐름 분석 기법을 사용하여 각 화학물질 생산을 극대화 시키기 위해 필요한 균주 개량 전략을 제시하였다. 특정 효소 반응과 목표 화학물질 생산의 상관관계 및 효소 반응과 대사물질 간 관계를 정량적으로 분석하여 상향 및 하향 조절해야할 효소 반응을 도출하였다. 이를 통해 연구팀은 단순히 높은 이론적 수율뿐 아니라 실제 생산능을 극대화할 수 있는 구체적인 전략을 제시했다. 이번 논문의 제 1저자인 김기배 박사는 “타 생물에서 유래한 대사 경로의 도입과 보조인자 교환 전략을 활용하면 기존 한계를 뛰어넘는 새로운 미생물 세포공장을 설계할 수 있다.”며, “본 연구에서 제공하는 전략은 미생물 기반 생산 공정을 더욱 경제적이고 효율적으로 발전시키는데 핵심적인 역할을 할 것”이라고 설명했다. 또한, 이상엽 특훈교수는 “이번 연구는 시스템 대사공학 분야에서 미생물 균주 선정과 대사경로 설계 단계에서 어려움을 줄이고, 보다 효율적인 미생물 세포공장 개발을 위한 핵심 참고자료가 될 것”이라며, “향후 바이오 연료, 바이오플라스틱, 기능성 식품 소재 등 다양한 친환경 화학물질 생산 기술 개발에 크게 기여할 것으로 기대된다.” 고 밝혔다. 생물공정연구센터 김기배 박사가 참여한 이번 논문은 국제 학술지 네이처(Nature) 誌가 발행하는 `네이처 커뮤니케이션즈(Nature Communications)'에 동료 심사를 거쳐 3월 24일 字 게재됐다. ※ 논문명 : 미생물 세포 공장의 역량에 대한 종합적 평가 (Comprehensive evaluation of the capacities of microbial cell factories) ※ 저자 정보 : 김기배 (한국과학기술원, 제1 저자), 김하림 (한국과학기술원, 제2 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 3 명 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제의 지원, 그리고 합성생물학핵심기술개발 사업의‘바이오제조 산업 선도를 위한 첨단 합성생물학 원천기술 개발’과제의 지원을 받아 수행됐다.
2025.04.07
조회수 665
머리카락 1,000분의 1 나노섬유 혁신, 세계 최고 CO₂ 전해전지 개발
지구 온난화의 주범인 이산화탄소를 시장 가치가 높은 화학물질로 전환할 수만 있다면, 환경 문제를 해결함과 동시에 높은 경제적 가치를 창출할 수 있다. 국내 연구진이 이산화탄소(CO2)를 일산화탄소(CO)로 전환하는 고성능 ‘세라믹 전해전지’를 개발하여 탄소중립 실현을 위한 핵심 기술로 주목받고 있다. 우리 대학 기계공학과 이강택 교수 연구팀이 신소재 세라믹 나노 복합섬유를 개발해 현존 최고 성능의 이산화탄소 분해 성능을 갖는 세라믹 전해전지를 개발하는 데 성공했다고 1일 밝혔다. 세라믹 전해전지(SOEC)는 이산화탄소를 가치 있는 화학물질로 전환할 수 있는 유망한 에너지 변환 기술로 낮은 배출량과 높은 효율성이라는 추가적인 이점이 있다. 하지만 기존 세라믹 전해전지는 작동 온도가 800℃ 이상으로, 유지 비용이 크고 안정성이 낮아 상용화에 한계가 있었다. 이에 연구팀은 전기가 잘 통하는 ‘초이온전도체’ 소재를 기존 전극에 함께 섞어 만든 ‘복합 나노섬유 전극’을 개발해 전기화학 반응이 더 활발하게 일어나도록 설계하고, 이를 통해 세라믹 전해전지가 더 낮은 온도에서도 효율적으로 작동할 수 있는 기반을 마련했다. 나아가, 이러한 소재 복합을 통해 나노섬유의 두께를 약 45% 감소시키고, 전극을 머리카락보다 1,000배 가는 두께(100나노미터)로 제작하여 전기분해 반응이 일어나는 면적을 극대화하여, 세라믹 전해전지의 작동 온도를 낮추는 동시에 이산화탄소 분해 성능을 약 50% 향상시키는데 성공했다. 복합 나노섬유가 적용된 세라믹 전해전지는 기존에 보고된 소자 중 가장 높은 세계 최고 수준의 이산화탄소 분해 성능(700℃에서 1.25 A/cm2)을 기록했으며, 300시간의 장기 구동에도 안정적인 전압을 유지해 소재의 탁월함을 입증했다. 이강택 교수는 “이번 연구에서 제안된 나노섬유 전극의 제작 및 설계 기법은 이산화탄소 저감뿐만 아니라 그린수소 및 친환경 전력 생산과 같은 다양한 차세대 에너지 변환 소자의 개발에 있어 선도적인 기술이 될 것”이라고 말했다. 우리 대학 기계공학과 김민정 석사, 김형근 박사과정, 아크롬존 석사가 공동 제 1 저자로 참여하고, 한국지질지원연구원 정인철 박사, 기계공학과 오세은 박사과정, 윤가영 석사과정이 공동저자로 참여한 이번 연구는 촉매·재료 분야의 세계적 권위지인 ‘어플라이드 카탈리시스 B: 환경과 에너지, Applied Catalysis B: Environment and Energy (IF:20.3)’에 3월 3일 온라인 게재됐다. (논문명: Exceptional CO2 Reduction Performance in Symmetric Solid Oxide Electrolysis Cells Enabled via Nanofiber Heterointerface Engineering, https://doi.org/10.1016/j.apcatb.2025.125222) 한편, 이번 연구는 과학기술정보통신부 나노 및 소재 기술개발사업, 개인기초연구사업 지원으로 수행됐다.
2025.04.01
조회수 1288
피부에 부착할 수 있는 촉감 전달 패치 개발
기계공학과 경기욱 교수 연구팀이 피부에 부착하여 다양한 촉감을 전달할 수 있는 초경량의 얇고 유연한 인공근육기반 촉감 전달 패치를 개발했다. 최근 가상현실(virtual reality, VR)과 증강현실(augmented reality, AR)의 기술이 각광받으면서, 더욱 현실감을 증대시키기 위해서 시각과 청각뿐만 아니라 촉각을 전달하는 기술이 중요한 역할을 하고 있다. 또한 사용자가 로봇을 원격조종하여 세밀한 작업을 하기 위해서는, 세밀한 촉감 전달이 필요하다. 그러나 단순한 진동이나 압력을 넘어서, 세밀하고 다양한 촉감을 전달할 수 있는 기술은 여전히 큰 도전이다. 개발된 촉감 구동기는 지름 6 mm, 두께 1.1 mm로 매우 작고 얇은 구조임에도 불구하고, 압력에서부터 고주파 진동까지 다양한 촉감을 전달할 수 있다. 또한 개발된 구동기는 32 mg 의 매우 가벼운 무게에도 불구하고 25 g의 추를 빠르게 밀어 올릴 수 있을 정도로 높은 출력밀도를 갖고 있다. 연구팀은 이 구동기를 손가락 끝 좁은 크기에 다수 배열하여 개별적으로 제어함으로써 다양한 촉감을 생성할 수 있는 햅틱 패치를 개발했다. 개발된 촉감 전달 패치는 얇고 유연하여 피부에 쉽게 부착되며, 가상 환경 속 물체의 3차원 형상과 표면질감을 정교하게 구현할 수 있다. 이 기술은 가상/증강 현실에서의 새로운 상호작용 방식을 제시하며, 차세대 촉감 전달 장치로서뿐만 아니라 초소형 로봇 등 다양한 분야에서도 활용될 것으로 기대된다. 본 연구는 졸업생 윤정환 박사의 박사학위 논문 연구로, 연구 결과는 지난 3월 국제학술지 ‘사이언스 어드벤시스(Science Advances)’ Vol.11(12)에 게재됐다. (논문명: Skin-attached haptic patch for versatile and augmented tactile interaction) 본 연구는 ETRI, UCLA와 공동으로 수행되었으며, 국가과학기술연구회(CRC23021-000) 및 한국전자통신연구원(24YB1700)의 지원을 받았다.
2025.03.28
조회수 851
외계행성 감지 중적외선 광검출기 혁신, 환경·의료 개척
미국 항공우주국(NASA)의 제임스웹 우주망원경(JWST)은 중적외선 스펙트럼을 활용해 외계 행성 대기의 수증기, 이산화황 등 분자 성분을 정밀하게 분석하고 있다. 이처럼 각 분자가 ‘지문’처럼 고유한 패턴을 나타내는 중적외선 분석의 핵심은, 아주 약한 빛의 세기까지 정밀하게 측정할 수 있는 고감도 광검출기 기술이다. 최근 KAIST 연구진이 중적외선 스펙트럼의 넓은 영역을 감지할 수 있는 혁신적 광검출기 기술을 개발하며 주목을 받고 있다. 우리 대학 전기및전자공학부 김상현 교수팀이 상온에서 안정적으로 동작하는 중적외선 광검출기 기술을 개발하고, 이를 통해 초소형 광학 센서 상용화에 새로운 전환점을 마련했다고 27일 밝혔다. 이번에 개발된 광검출기는 기존 실리콘(Silicon) 기반 CMOS 공정을 활용해 저비용 대량 생산이 가능하며, 상온에서 안정적으로 동작하는 것이 특징이다. 특히 연구팀은 이 광검출기를 적용한 초소형·초박형 광학 센서를 이용해 이산화탄소(CO2) 가스를 실시간으로 검출하는 데 성공, 환경 모니터링 및 유해가스 분석 등 다양한 응용 가능성을 입증했다. 기존 중적외선 광검출기는 상온에서의 높은 열적 잡음(Thermal noise)으로 인해 일반적으로 냉각 시스템이 요구된다. 이러한 냉각 시스템은 장비의 크기와 비용을 증가시켜, 센서의 소형화 및 휴대용 기기 응용을 어렵게 만든다. 또한, 기존 중적외선 광검출기는 실리콘 기반 CMOS 공정과 호환되지 않아 대량생산이 어렵고 상용화가 제한됐다. 이에 연구팀은 실리콘과 같은 주기율표 4족 원소인 저마늄(Germanium) 반도체를 기반으로 한 광학 플랫폼을 활용해, 넓은 대역의 중적외선 검출 성능을 확보하면서도 동시에 상온에서 안정적으로 동작할 수 있는 새로운 형태의 도파로형(waveguide-integrated) 광검출기를 개발했다. ‘도파로’란 빛을 특정한 경로로 손실 없이 효과적으로 유도하는 구조물을 의미한다. 온-칩(on-chip) 상에서 다양한 기능의 광학 회로를 구현하기 위해서는 도파로형 광검출기를 포함해 도파로를 기반으로 하는 광학 소자의 개발이 필수적으로 요구된다. 이번 기술은 기존에 광검출기 동작에 일반적으로 활용되는 밴드갭 흡수 원리와는 다르게 볼로미터 효과(Bolometric effect)*를 활용해 중적외선 스펙트럼 영역 전체를 대응할 수 있기 때문에 다양한 종류의 분자들의 실시간 센싱에 범용적으로 활용될 수 있다. *볼로미터 효과(Bolometric effect): 빛을 흡수하면 온도가 올라가고, 그 온도 변화에 따라 전기적인 신호가 달라지는 원리 연구팀이 개발한 상온 동작 및 CMOS 공정 호환 중적외선 도파로형 광검출기는 기존 중적외선 센서 기술이 가진 냉각 필요성, 대량 생산의 어려움, 높은 비용 문제를 해결하는 혁신적인 기술로 평가된다. 이를 통해 환경 모니터링, 의료 진단, 산업 공정 관리, 국방 및 보안, 스마트 디바이스 등 다양한 응용 분야에 적용 가능하며, 차세대 중적외선 센서 기술의 핵심적인 돌파구를 제공할 것으로 기대된다. 김상현 교수는 “이번 연구는 기존 중적외선 광검출기 기술의 한계를 극복한 새로운 접근 방식이며, 향후 다양한 응용 분야에서 실용화될 가능성이 매우 크다”고 밝혔다. 또한, “특히 CMOS 공정과 호환되는 센서 기술로, 저비용 대량생산이 가능해 차세대 환경 모니터링 시스템, 스마트 제조 현장 등에서 적극 활용될 것”이라고 덧붙였다. 이번 연구 결과는 심준섭 박사(現 하버드대학교 박사후 연구원)가 제1 저자로 참여해 국제 저명 학술지인 ‘빛, 과학과 응용(Light: Science & Applications, JCR 2.9%, IF=20.6)’에 2025년 3월 19일 자 발표됐다. (논문제목: Room-temperature waveguide-integrated photodetector using bolometric effect for mid-infrared spectroscopy applications, https://doi.org/10.1038/s41377-025-01803-3) 한편, 해당 연구는 한국연구재단의 지원을 받아 진행됐다.
2025.03.27
조회수 887
미생물로 친환경 나일론 유사 플라스틱 개발 성공
폴리에스터 아마이드는 일반적으로 많이 사용되는 플라스틱인 PET(폴리에스터)와 나일론(폴리아마이드)의 장점을 모두 갖춘 차세대 소재다. 하지만 지금까지는 화석 연료에서만 생산할 수 있어 환경오염 문제를 피할 수 없었다. 우리 연구진이 플라스틱을 대체할 미생물을 이용한 신규 바이오 기반 플라스틱을 개발하는데 성공했다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용하여 미생물 균주를 개발하고 여러 가지 신규 유형의 친환경 바이오 플라스틱인 폴리에스터 아마이드를 생산하여, 한국화학연구원(원장 이영국) 연구진과 공동 분석을 통해 생산된 이 플라스틱의 물성 확인까지 성공했다고 20일 밝혔다. 이상엽 특훈교수 연구팀은 자연계에 존재하지 않는 새로운 미생물 대사회로를 설계해 폴리(3-하이드록시뷰티레이트-ran-3-아미노프로피오네이트), 폴리(3-하이드록시뷰티레이트-ran-4-아미노뷰티레이트) 등을 포함한 9종의 다른 폴리에스터 아마이드를 생산할 수 있는 플랫폼 미생물 균주를 개발했다. 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 원료로 사용해 폴리에스터 아마이드를 친환경적으로 생산할 수 있도록 했다. 또한 연구팀은 해단 균주의 유가 배양식 발효 공정을 이용해 고효율 생산 (54.57 g/L)을 보임으로써 추후 산업화될 가능성도 확인했다. 우리 연구진은 한국화학연구원 정해민, 신지훈 연구원과 함께 바이오 기반 플라스틱의 물성을 분석한 결과, 기존의 고밀도 폴리에틸렌(HDPE)과 유사한 성질을 갖고 있는 것으로 나타났다. 즉, 친환경적이면서도 기존 플라스틱을 대체할 수 있을 만큼 강도와 내구성이 뛰어나다는 것을 확인했다. 이번 연구에서 개발된 균주 및 전략들은 여러 가지 폴리에스터 아마이드 뿐만 아니라 다른 그룹의 여러가지 고분자들을 생산하는 대사회로들을 구축하는데 유용하게 쓰일 것으로 예상된다. 이상엽 특훈교수는 “이번 연구는 석유화학 산업 기반에 의존하지 않고도 폴리에스터 아마이드(플라스틱)을 재생가능한 바이오기반 화학산업을 통해 만들수 있는 가능성을 세계 최초로 제시한 것으로 앞으로 생산량과 생산성을 더욱 높이는 연구를 이어갈 계획”이라 말했다. 해당 연구 결과는 국제 학술지인 `네이쳐 케미컬 바이올로지(Nature Chemical Biology)'에 3월 17일자로 온라인 게재됐다. ※ 논문명 : Biosynthesis of poly(ester amide)s in engineered Escherichia coli, DOI:10.1038/s41589-025-01842-2) ※ 저자 정보 : 채동언(KAIST, 제1저자), 최소영(KAIST, 제2저자), 안다희(KAIST, 제3저자), 장우대(KAIST, 제4저자), 정해민(한국화학연구원, 제5저자), 신지훈(한국화학연구원, 제6저자), 이상엽(KAIST, 교신저자) 포함 총 7명 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2025.03.20
조회수 2158
‘카이랄 나노 페인트’ 기술로 항암, 코로나 치료 혁신
기존의 의료용 나노 소재는 체내에서 잘 전달되지 않거나 쉽게 분해되는 문제가 있었다. 우리 연구진은 카이랄 나노 페인트 기술로 의료용 나노 소재에 카이랄성을 부여한 자성 나노 입자를 개발했다. 그 결과 항암 온열 치료 효과가 기존보다 4배 이상 향상됐고, 약물 전달 시스템에도 적용하여 코로나 19 백신 등 mRNA 치료제의 효율성을 극대화할 수 있는 새로운 패러다임을 제시했다. 신소재공학과 염지현 교수 연구팀이 바이오 나노 소재의 표면에 카이랄성*을 부여할 수 있는 ‘카이랄 나노 페인트’기술을 최초로 개발했고 후속 연구로 생명과학과 정현정 교수팀과 함께 mRNA를 전달하는 지질전달체** 표면에도 성공적으로 도입했다고 19일 밝혔다. 이 연구들은 각각 국제 학술지 ACS Nano와 ACS Applied Materials & Interfaces 에 게재됐다. *카이랄성(Chirality): 카이랄성은 물체가 거울에 비친 모습과 겹치지 않는 성질을 의미함. 우리 몸에서도 카이랄성을 가진 분자들이 특정한 방식으로 작용하는데, 연구팀은 이를 활용해 나노 소재의 성능을 개선함 **지질전달체(Lipid Nanoparticle, LNP): mRNA, 유전자, 약물 등의 생체물질을 감싸서 세포 내부로 안전하게 전달하는 나노입자임. mRNA 백신(예: 코로나19 백신)과 같은 유전자 치료제에서 중요한 역할을 함. 염지현 교수 연구팀은 우리 몸은 왼손잡이(L-형)와 오른손잡이(D-형) 구조를 가진 분자들이 서로 다르게 작용하는 카이랄 선택성(Chiral Selectivity)에 주목하고 나노 소재의 표면에 ‘카이랄 나노 페인트’를 적용해 카이랄성을 부여하는 기술을 개발했다. 이를 통해 십수 나노미터(nm) 크기의 작은 나노 입자부터 수 마이크로미터 (μm) 크기의 큰 마이크로 구조체까지 다양한 크기의 소재에 카이랄성을 입히는 데 성공했다. 연구팀은 더 나아가 카이랄 나노 페인트 기술을 활용해 카이랄 자성 나노 입자를 합성하고, 이를 종양에 주입한 뒤 자기장 처리로 생성되는 열을 통해 종양 조직을 괴사시키는 항암 온열 치료 기술을 선보였다. 이 과정에서 D-카이랄성을 가진 자성 나노 입자가 L-카이랄성을 가진 자성 나노 입자보다 암세포에 더 많이 흡수되고, 그 결과 4배 이상 향상된 항암 치료 효과가 있음을 증명했다. 이와 같은 암세포 내부로의 흡수 효율 및 항암 치료 효율의 차이가 나노 입자 표면에 처리된 카이랄 나노 페인트와 세포 표면의 수용체 간의 ‘카이랄 선택적 상호작용’에 의한 것임을 컴퓨터 시뮬레이션과 세포 실험을 통해 밝혔다. 향후, 카이랄 나노 페인트 기술은 의료용 바이오 소재를 비롯해 차세대 약물 전달 시스템, 바이오 센서, 촉매 및 나노 효소 등 다양한 분야에 응용될 것으로 기대된다. 신소재공학과 정욱진 석박사통합과정 학생이 제1 저자인 이번 연구 결과는 지난 3월 2일 국제 학술지 ‘에이씨에스 나노(ACS Nano)’에 온라인 게재됐다. (논문명: Universal Chiral Nanopaint for Metal Oxide Biomaterials) DOI: 10.1021/acsnano.4c14460 후속 연구로 mRNA를 전달하는 지질전달체 표면에 카이랄 페인트 기술을 도입했다. mRNA 기반 치료제는 세포 내에서 단백질을 직접 합성할 수 있도록 유전 정보를 전달하는 방식이지만, 전달체의 불안정성으로 인해 치료 효과가 제한적이었다. 카이랄 나노 페인트 기술은 이러한 문제를 해결하여 mRNA 치료제의 효율성을 극대화할 수 있는 새로운 패러다임을 제시했다. 그 결과, D-카이랄성 페인트를 도입한 지질전달체를 사용한 경우 mRNA의 세포 내 발현을 2배 이상 안정적으로 증가시켰다. 이 연구는 생명과학과 이주희 연구원과 신소재공학과 정욱진 박사과정 학생이 공동 1 저자로 국제 학술지 ‘에이씨에스 응용 재료 및 인터페이스(ACS Applied Materials & Interfaces)’에 3월 17일 게재됐다. (논문명: Chirality-controlled Lipid Nanoparticles for mRNA Delivery, DOI: https://doi.org/10.1021/acsami.5c00920) 염지현 교수는 “이번 연구를 통해 바이오 나노 소재의 성능을 크게 향상시키고 다양한 크기 및 모양을 가진 혁신적 나노 소재 합성 방법론을 제시했다. 앞으로는 이러한 카이랄 나노 소재를 활용해 암, 코로나 등 다양한 질병을 예방하는 백신부터 진단 및 치료하는 차세대 바이오 플랫폼 개발 및 연구를 지속할 계획”이라고 설명했다. 이번 연구는 과학기술정보통신부의 재원으로 범부처전주기의료기기연구개발사업단, 연구재단 우수신진사업 등의 지원을 받아 수행됐다.
2025.03.19
조회수 1875
전기차 리튬배터리 충전 15분이면 끝!
전기차(EV) 시장의 성장과 함께 리튬이온 배터리의 충전 시간을 단축하는 기술이 중요한 과제로 떠오르고 있다. 우리 연구진이 충전 속도가 상대적으로 느린 전기차 리튬 배터리의 혁신적 전해질 기술을 개발하여 충전 시간을 15분으로 단축시키는데 성공했다. 우리 대학생명화학공학과 최남순 교수 연구팀이 신소재공학과 홍승범 교수 연구팀과 협력 연구를 통해 새로운 전해질 용매 ‘아이소부티로니트릴(isoBN)’을 개발하여 배터리내 리튬 이온 이동을 극대화시키는 전략으로 전기차 배터리의 충전 시간이 상온에서 15분 내로 가능한 기술을 개발했다고 17일 밝혔다. 연구팀은 전해질 내에서 용매화(Solvation) 구조를 조절하는 전략을 개발했다. 이는 배터리의 핵심 요소인 음극 계면층(SEI, Solid Electrolyte Interphase)의 형성을 최적화하여 리튬이온 이동을 원활하게 하고, 고속 충전 시 발생하는 문제(리튬 전착, 배터리 수명 단축 등)를 해결하는 방식으로 리튬이온전지의 충전 속도를 향상시킬 수 있는 기반을 마련했다. 기존 리튬이온전지 전해질에 사용되는 에틸렌 카보네이트(ethylene carbonate, 이하 EC) 전해액은 높은 점성(3.38 cP), 강한 용매화(Solvation) 특성, 큰 결정립으로 구성된 음극 계면층을 만들게 되어 고속 충전 시 리튬이온이 원활하게 이동하거나 흑연 음극 층상 구조로 들어가지 못한다. 또한, 음극 계면층 위 또는 음극판 상단부(분리막과 접촉하고 있는 부분)에 금속 리튬이 전착(Li plating)된다. 이러한 전착 리튬은 충·방전이 불가능한 비가역적 리튬으로 배터리 수명 단축과 단락에 의한 화재 발생 위험을 높인다. 최남순 교수 연구팀은 이러한 문제를 해결하기 위해 EC를 완전히 대체할 수 있는 새로운 전해질 용매인 아이소부티로니트릴(isobutyronitrile, 이하 isoBN)을 배터리 전해질에 도입해 리튬이온의 탈용매화 에너지를 감소시키고 음극 계면층의 결정립 크기를 감소시켜 저온 및 상온에서 고속 충전이 되는 배터리 전해질 기술을 제시했다. 연구진은 리튬 이온과 약한 결합을 하는 isoBN 용매 도입을 통해 EC 전해질 대비 55% 낮은 점성(1.52 cP), 54% 높은 이온전도도(12.80 S/cm)를 가지는 고이온 전달성 전해질 시스템을 개발했다. 연구 결과, isoBN 전해질은 리튬이온의 탈용매화 에너지를 크게 감소시켜 15분 고속 충전 300회 사이클에서도 음극 상단부에 비가역성 리튬전착 없이 94.2%의 매우 높은 용량 유지율을 나타냈다. 연구진은 X선 광전자 분광법(X-ray Photoelectron Spectroscopy)과 비행시간 이차이온 질량 분석(Time-of-Flight Secondary Ion Mass Spectrometry) 등을 활용해 음극 계면층의 조성과 리튬이온의 이동 경로 등을 정밀 분석했다. 또한, 원자간력 현미경의 모드 중에서 전기화학적 변형 현미경(Electrochemical Strain Microscopy)을 활용해, 전해액 조성에 따라 리튬이온의 전도도가 달라지는 것과 음극계면층에서 리튬이온이 이동하는 것을 세계 최초로 영상화했으며, 전해질 조성이 음극 계면층 결정립 크기에 큰 영향을 주는 것을 밝혀냈다. 이번 연구는 음극 계면층의 결정립 크기와 배열상태 및 전해질의 용매화 구조가 리튬이온전지의 고속 충전 시간에 영향을 주는 핵심 요소임을 보였다. 또한, 높은 결정성으로 저온에서 빠른 리튬이온의 이동이 불가능한 EC 용매를 저결정성-초저점도 isoBN 용매로 대체함으로써 상온 및 영하 10도에서 고속 충전이 가능해 전기차 배터리의 가장 큰 장해물인 충전 시간을 확 줄이는 기술로 평가된다. 최남순 교수는 “리튬이온전지의 충전 시간을 획기적으로 줄이는 음극 계면층 기술과 전해질 시스템을 제시했다”라고 말했다. 이어 “이번 연구는 기존 고리형 카보네이트 전해질 소재(EC)의 한계를 극복하는 니트릴계 전해질 기술(isoBN)로 충전 시간 단축에 따른 전기차 대중화를 앞당기는 데 큰 진전을 이루며 향후 에너지 저장 시스템(ESS), 드론, 우주 항공 산업 등 다양한 분야에서 리튬이온전지의 고속 충전 기술이 실용화될 수 있을 것으로 기대된다”라고 전했다. 생명화학공학과 최남순 교수, 송채은, 한승희 연구원과 신소재공학과 홍승범 교수, 최영우 연구원이 공동 제 1저자로 진행한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’에 3월 11일 게재되며 그 혁신성을 인정받았다. (논문명 : Geometric Design of Interface Structures and Electrolyte Solvation Chemistry for Fast Charging Lithium-Ion Batteries, https://doi.org/10.1002/adma.202418773) 한편 이번 연구는 한국산업기술기획평가원의 전기차 고출력 배터리 및 충전시스템 기술 개발사업과 한국연구재단의 나노·소재기술개발사업의 지원을 받아 수행됐다.
2025.03.17
조회수 2687
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 88