본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
EMS
by recently order
by view order
Professor Sang-Yup Lee Named the Winner of the Ho-Am Prize in 2014
The Ho-Am Prize, awarded by Samsung Group’s Ho-Am Foundation, was announced on April 2, 2014 in Seoul. Professor Sang-Yup Lee of Chemical and Biomolecular Engineering at KAIST was among the five recipients. The prize is presented to Koreans who have made great contributions to the development of Korea in the field of science, engineering, medicine, arts, and philanthropy. Professor Lee received the award in recognition of his pioneering research on systems metabolic engineering. For the story written by Korea Joongang Daily, please go to the link below: Ho-Am Foundation Names Annual Prize Winners Korea Joongang Daily April 3, 2014 http://koreajoongangdaily.joins.com/news/article/Article.aspx?aid=2987332
2014.04.03
View 9062
Book Announcement: Sound Visualization and Manipulation
The movie Gravity won seven Oscar awards this year, one of which was for its outstanding 3D sound mixing, immersing viewers in the full experience of the troubled space expedition. 3D audio effects are generated by manipulating the sound produced by speakers, speaker-arrays, or headphones to place a virtual sound source at a desired location in 3D space such as behind, above, or below the listener's head. Two professors from the Department of Mechanical Engineering at KAIST have recently published a book that explains two important technologies related to 3D sound effects: sound visualization and manipulation. Professor Yang-Hann Kim, an eminent scholar in sound engineering, and Professor Jung-Woo Choi collaborated to write Sound Visualization and Manipulation (Wily 2013), which uniquely addresses the two most important problems in the field in a unified way. The book introduces general concepts and theories and describes a number of techniques in sound visualization and manipulation, offering an interrelated approach to two very different topics: sound field visualization techniques based on microphone arrays and controlled sound field generation techniques using loudspeaker arrays. The authors also display a solid understanding of the associated physical and mathematical concepts applied to solve the visualization and manipulation problems and provide extensive examples demonstrating the benefits and drawbacks of various applications, including beamforming and acoustic holography technology. The book will be an excellent reference for graduate students, researchers, and professionals in acoustic engineering, as well as in audio and noise control system development. For detailed descriptions of the book: http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118368479.html
2014.03.10
View 11625
2013 International Forum on Eco-Friendly Vehicle and System
Leaders in transportation technology gathered at KAIST to discuss commercialization & standardization and to encourage the exchange of research progress, strategy, and future initiatives in transportation technology. The Graduate School for Green Transportation at KAIST hosted the 2013 International Forum on Eco-friendly Vehicles and Systems (IFEV) in Fusion Hall of the KAIST Institute Building from October 21 to 22. About 50 leaders in the field of future transportation from academic institutes and industries including Dr. Soon-Man Hong, President of Korea Railroad Research Institute (KRRI), Dr. Kwang-Hee Nam, Professor at Pohang University of Science and Technology (POSTECH), and Mr. Mike Schagrin, the Intelligent Transportation Systems Program Manager of the US Department of Transportation (retired) participated in the 4th annual IFEV. The commercialization & standardization session and a technical session were followed by the plenary meeting of the forum. Dr. Hong, the keynote speaker, introduced the High Capacity Double Deck High Speed Train, Near Surface Subway System, and Urban Railway System with Wireless Power Transfer Technology under the title “Korea’s Policy and Technology Initiative for Enhancing Green Transport Systems.” Dr. Kwang-Hee Nam presented “Electric Vehicle Trends & the POSTECH E-Car Research Center Power Train Design,” followed by Mr. Mike Schagrin who spoke about “Going Green with Connected Automation.” Dr. Omer C. Onar from the Oak Ridge National Laboratory (ORNL) shared recent research on “ORNL Development in Stationary and Dynamic Wireless Charging.” In the commercialization session, Faical Turki of Vahle, Germany, presented “Wireless Inductive Battery Chargers,” and Professor Kazuyuki Ouchi from Tokyo University presented “Wind Challenger, the Next Generation Hybrid Vessels.” In the technical session, presentations and discussions were performed on future ground vehicles and railroad technology, intelligent transportation systems and strategy, and policy on eco-friendly vehicle technology, including Professor In-Soo Suh of the Graduate School for Green Transportation at KAIST who presented on “Armadillo-T: 4WD Micro Electric EV with a Foldable Body Concept.” On the second day of IFEV 2013, representatives of the European Union’s Safe and Green Road Vehicles (SAGE) consortium discussed connectivity in road transportation as a means of improving safety, efficiency and convenience in future safe and green vehicles with collaboration from Korean transportation organizations such as the Korea Transport Institute and Electronics and Telecommunications Research Institute. Professor Suh, who organized the forum, said, “This forum will serve as an excellent opportunity to discuss and share R&BD progress in the green transportation field. “Details can be found at http://gt.kaist.ac.kr/ifev2013/.
2013.11.15
View 11082
Professor Kwang-Hyun Cho publishes Encyclopaedia of Systems Biology
Professor Kwang-Hyun Cho KAIST Biological and Brain Engineering Department’s Professor Kwang-Hyun Cho edited the Encyclopaedia of Systems Biology with three scholars, all experts of Systems Biology in England, Germany and the United States. It is rare that a Korean scientist edits a world renowned academic science encyclopaedia. The Encyclopaedia, published by the New York office of Springer Verlag, was a grand international project five years in the making by 28 editors and 391 scientists with expertise in Systems Biology from around the world. The Encyclopaedia compiles various research areas of Systems Biology, the new academic paradigm of the 21st century through the integration of IT and BT, comprehensively on 3,000 pages in 4 four volumes. Professor Kwang-Hyun Cho, who led this international project, majored in electrical engineering and pioneered the field of Systems Biology, the integrated study of biological sciences and engineering, as a new integrated field of IT since the 1990s. The professor has achieved various innovative research results since then. Recently he has investigated “kernel,” an evolutionary core structure in complex biological networks and developed a new cancer treatment through the state space analysis of the molecular network of cancer cells. His work was published in Science Signalling, a sister journal of Science, as a cover story several times, and contributed to foundational research as well as commercialisation of the integrated fields of IT and BT.
2013.08.27
View 8753
Production of chemicals without petroleum
Systems metabolic engineering of microorganisms allows efficient production of natural and non-natural chemicals from renewable non-food biomass In our everyday life, we use gasoline, diesel, plastics, rubbers, and numerous chemicals that are derived from fossil oil through petrochemical refinery processes. However, this is not sustainable due to the limited nature of fossil resources. Furthermore, our world is facing problems associated with climate change and other environmental problems due to the increasing use of fossil resources. One solution to address above problems is the use of renewable non-food biomass for the production of chemicals, fuels and materials through biorefineries. Microorganisms are used as biocatalysts for converting biomass to the products of interest. However, when microorganisms are isolated from nature, their efficiencies of producing our desired chemicals and materials are rather low. Metabolic engineering is thus performed to improve cellular characteristics to desired levels. Over the last decade, much advances have been made in systems biology that allows system-wide characterization of cellular networks, both qualitatively and quantitatively, followed by whole-cell level engineering based on these findings. Furthermore, rapid advances in synthetic biology allow design and synthesis of fine controlled metabolic and gene regulatory circuits. The strategies and methods of systems biology and synthetic biology are rapidly integrated with metabolic engineering, thus resulting in "systems metabolic engineering". In the paper published online in Nature Chemical Biology on May 17, Professor Sang Yup Lee and his colleagues at the Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea present new general strategies of systems metabolic engineering for developing microorganisms for the production of natural and non-natural chemicals from renewable biomass. They first classified the chemicals to be produced into four categories based on whether they have thus far been identified to exist in nature (natural vs. nonnatural) and whether they can be produced by inherent pathways of microorganisms (inherent, noninherent, or created): natural-inherent, natural-noninherent, non-natural-noninherent, and non-natural-created ones. General strategies for systems metabolic engineering of microorganisms for the production of these chemicals using various tools and methods based on omics, genome-scale metabolic modeling and simulation, evolutionary engineering, synthetic biology are suggested with relevant examples. For the production of non-natural chemicals, strategies for the construction of synthetic metabolic pathways are also suggested. Having collected diverse tools and methods for systems metabolic engineering, authors also suggest how to use them and their possible limitations. Professor Sang Yup Lee said "It is expected that increasing number of chemicals and materials will be produced through biorefineries. We are now equipped with new strategies for developing microbial strains that can produce our desired products at very high efficiencies, thus allowing cost competitiveness to those produced by petrochemical refineries." Editor of Nature Chemical Biology, Dr. Catherine Goodman, said "It is exciting to see how quickly science is progressing in this field – ideas that used to be science fiction are taking shape in research labs and biorefineries. The article by Professor Lee and his colleagues not only highlights the most advanced techniques and strategies available, but offers critical advice to progress the field as a whole." The works of Professor Lee have been supported by the Advanced Biomass Center and Intelligent Synthetic Biology Center of Global Frontier Program from the Korean Ministry of Education, Science and Technology through National Research Foundation. Contact: Dr. Sang Yup Lee, Distinguished Professor and Dean, KAIST, Daejeon, Korea (leesy@kaist.ac.kr, +82-42-350-3930)
2012.05.23
View 11683
International workshop on healthcare technology to be held on campus, April 24, 2012
KAIST and the KTH Royal Institute of Technology (KTH), Sweden, host a joint workshop on healthcare technologies on Tuesday, April 24, at the LG Semicon Hall (N24). Open to the public, the workshop will proceed with presentations and discussions by participants from both institutions. Presentation topics and speakers are as follows: “Applied medical engineering, innovation from clinical problems” by Professor Lars-Åke Brodin, Dean of School of Technology and Health, KTH “ICT in healthcare” by Professor Björn-Erik Erlandsson, School of Technology and Health, KTH “Department of environmental physiology, human research in extreme environments” by Researcher Mikael Grönkvist, School of Technology and Health, KTH “Brain function imaging using high-resolution MRI technology” by Professor Hyun Wook Park, Department of Electrical Engineering, KAIST “Bioinstrumentation for healthcare and physical human robot interactions” by Professor Jung Kim, Division of Mechanical Engineering, KAIST “A portable high-resolution near-infrared spectroscopy system” by Professor Hyeon-Min Bae, Department of Electrical Engineering, KAIST “Lab-on-a-chip technologies for integrative bioengineering” by Professor Je-Kyun Park, Department of Bio and Brain Engineering, KAIST “The cytoskeleton in cancer and regulation by oncogenic signaling” by Professor David M. Helfman, Department of Biological Sciences, KAIST Professor Chang Dong Yoo, Associate Vice President of Office of Special Projects and Institutional Relations at KAIST, who organized the workshop, says “Aging population and health issues are driving the demand for more sophisticated medical devices, procedures, and most importantly, qualified scientists and engineers specialized in health-related fields. This joint workshop will be a great chance to share new ideas and develop joint research between two leading research-oriented universities in two countries.” Partially supported by LG Ericsson in Korea, the workshop is funded largely by the generous donation, made last June by a Swedish couple, to KAIST scholar exchange program. The couple (Rune Jonasson and Kerstin Jonasson) donated 70 million krona (about 11.8 billion Korean won) to KTH last year and requested that some portion of the sum be used for a scholar exchange program with KAIST. The wife of the couple, Kerstin Jonasson, participated in the Korean War as a nurse, and upon her wish for further development in Korea’s science and technology, KAIST and KTH decided to use the donation for research in the field of healthcare and for a post-doc researcher exchange program. KTH is a world-class university of Sweden and has produced numerous researchers for private enterprises, like Ericsson, and venture businesses. Since 1988, KTH offers a top notch program for information technology; the School of Information and Communication Technology is located in the Kista district, a vibrant cluster of information and communications technology industries in Sweden, and has taken on the crucial role of supplying personnel to the Kista Science Park as well as to academic-industrial cooperation. For any inquiries, please contact the International Relations Team at +82-42-350-2441 (email: jungillee@kaist.ac.kr).
2012.04.21
View 10619
10 Technolgies to Change the World in 2012: The Future Technology Global Agenda Council
The Future Technology Global Agenda Council which is under the World Economy Forum and which KAIST’s biochemical engineering department’s Prof. Sang Yeob Lee is the head of, chose the 10 new technologies that will change the world in year 2012. The ten technologies include: IT, synthetic biology and metabolic engineering, Green Revolution 2.0, material construction nanotechnology, systematic biology and the simulation technology of biological systems, the technology to use CO2 as a natural resource, wireless power transmission technology, high density energy power system, personalized medical/nutritional/disease preventing system, and new education technology. The technologies were chosen on the basis of the opinions various science, industry, and government specialists and is deemed to have high potential to change the world in the near future. The Future Technology Global Agenda Council will choose ten new technologies yearly starting this year in order to solve the problems the world now faces. The informatics systems that was ranked 1st place, sifts only the data necessary for decision making out of the overflowing amount of data. Much interest has been spurred at the Davos forum. The synthetic biology and metabolic engineering chosen is expected to play an important role in creating new medicines and producing chemical substances and materials from reusable resources. Biomass has also been chosen as one of the top ten most important technologies as it was seen to be necessary to lead the second Green Revolution in order to stably provide food for the increasing population and to create bio refineries. Nanomaterials structured at the molecular level are expected to help us solve problems regarding energy, food, and resources. Systematic biology and computer modeling is gaining importance in availing humans to construct efficient remedies, materials, and processes while causing minimum effects on the environment, resource reserves, and other people. The technology to convert CO2, which is considered a problem all over the world, into a useful resource is also gaining the spotlight Together with such technologies, wireless power transmission technology, high density energy power system, personalized medical/nutritional/disease preventing system, and new education technology are also considered the top ten technologies to change the world. Prof. Lee said, “Many new discoveries are being made due to the accelerating rate of technological advancements. Many of the technologies that the council has found are sustainable and important for the construction of our future.”
2012.04.04
View 10264
Professor Lee Jae Kyu : Appointed Fellow at Association of Information Systems
Professor Lee Jae Kyu of the Graduate School of Information Media Management was made Fellow of the Association of Information Systems. Professor Less was the Chief Editor of Electronic Commerce Research and Applications, Chairman of Asia Pacific Information System Symposium, and Chairman of Korea Academy of Management Information, in addition to Chairman of the Academy of Korea Intelligence Information System. The ‘Electronic Commerce’ co-written by Professor Lee is being used as primary MBA textbook in many universities around the world. Homepage : http://www.business.kaist.ac.kr/faculty/jklee/
2012.01.31
View 8473
Future of Petrochemical Industry: The Age of Bio-Refineries
The concept of bio-refinery is based on using biomass from seaweeds and non-edible plant sources to produce various materials. Bio-refineries has been looked into with increasing interest in modern times due to the advent of global warming (and the subsequent changes in the atmosphere) and the exhaustion of natural resources. However past 20 years of research in metabolic engineering had a crucial limitation; the need to improve the efficiency of the microorganisms that actually go about converting biomass into biochemical materials. In order to compensate for the inefficiency, Professor Lee Sang Yeop combined systems biology, composite biology, evolutionary engineering to form ‘systems metabolic engineering’. This allows combining various data to explain the organism’s state in a multi-dimensional scope and respond accordingly by controlling the metabolism. The result of the experiment is set as the cover dissertation of ‘Trends in Biotechnology’ magazine’s August edition.
2011.07.28
View 10770
Professor Hwang Kyu Young Receives Outstanding Contributions Award from DASFAA
Professor Hwang Kyu Young received the 2011 Outstanding Contributions Award from the International Conference on Database Systems for Advanced Applications (DASFAA). Professor Hwang was the Chairman, Vice Chairman, Executive, etc. of the DASFAA Steering Committee for the past 12 years and has been leading the development in the field of database in the Asia/Pacific Region. He was also the editor in chief of The VLDB Journal which is the leading magazine in the field of database and the member of ACM SIGMOD Jim Gray Dissertation Award Committee, VLDB 10-year Best Paper Award Committee, and IEEE ICDE Influential Paper Awards Committee. He receives the Outstanding Contributions Award for ensuring high standards in world database research.
2011.05.31
View 8612
Remote Follows Your Thumb by Discovery News, May 19, 2011
The ACM CHI Conference on Human Factors in Computing Systems, an international conference of human-computer interaction, was held on May 7-12, 2011 in Vancouver, Canada. At the conference, KAIST’s research team presented a paper on the development of prototype, called "remote touch system," for manipulating a LED screen by putting user’s thumb’s shadow on a television or smart phone screen. Discovery News posted an online article on the technology, dated May 19, 2011. For the article, please copy and paste the following link in the address bar of Internet Explorer: http://news.discovery.com/tech/shadow-remote-touchscreen-110519.html?print=true
2011.05.20
View 8122
Businessweek: How Twitter Could Unleash World Peace, April 11, 2011
A KAIST graduate scholar, Meeyoung Cha, conducted a joint study with international researchers and released a paper on the aspect of twitter as an emerging cyber arena for political and social debates and discussions. An article on the paper from Businessweek follows: Businessweek April 11, 2011, 9:08PM EST text size: TT How Twitter Could Unleash World Peace Researchers from Britain, Korea, and Germany have determined that the amount of fresh information you get on Twitter is less a matter of what you follow than whom—and who follows you By Bobbie Johnson On certain days, Twitter can feel like the world"s biggest, fastest echo chamber. Since we tend to follow people who are similar to us, we often see our own views reflected back—meaning a gloomy cloud of irritation can rapidly swirl into a cyclone of outrage as we hear from other people who feel as we do. A group of computer scientists have discovered that the opposite may also be true. Can Twitter be part of the solution, not merely part of the problem? In a study to be presented at a conference in July, a team of researchers from the U.K."s University of Cambridge, Korea"s Graduate School of cultural Technology-KAIST, and Germany"s Max Planck Institute for Software Systems show how Twitter can provide users greater access to more varied political viewpoints and media sources than they might otherwise get. The paper, called "The Media Landscape in Twitter(http://www.cl.cam.ac.uk/~jac22/out/twitter-diverse.pdf)," explains how the team made surprising discoveries when they looked into the site"s usage patterns. First they looked at who follows whom and discovered that Twitter is a highly politicized space. Then they examined patterns of tweeting and retweeting to try to understand how people receive information on Twitter—and what they might see. Their conclusion: Although Twitter is a pretty partisan space, it can offer unprecedented opportunities to break down the barriers that plague local, national, and international politics. How? Through retweets and interaction—what the authors call "indirect media exposure." As they put it, this "expands the political diversity of news to which users are exposed to a surprising extent, increasing the range by between 60 percent and 98 percent. These results are valuable because they have not been readily available to traditional media and they can help predict how we will read news and how publishers will interact with us in the future." If you"re interested in the way Twitter works, I recommend reading the paper, which isn"t very long. Meanwhile, let"s boil it down to a few key pieces of data and see what lessons they can teach. Most Twitter users are political. Just over half (50.8 percent) of all Twitter users studied showed a distinct political bias in the media outlets and individuals they followed. Most of those lean to the left of the political spectrum, accounting for 62 percent of users who demonstrated some bias. Thirty-seven percent were doggedly centrist. Just 1 percent of Twitter users who showed a political preference were right-wing. Here are a couple of caveats about reading too much into the sharp divide the authors found. Given that Twitter"s user base is younger and more metropolitan than the societal norm, it"s not surprising that it"s weighted to the left. It"s worth noting that this study was undertaken more than a year ago; since then, Twitter has grown dramatically, while global politics have largely skewed back toward the right. Twitter"s user base today might reflect a more-balanced political picture. Either way, there"s a big split. Twitter has secondary and tertiary benefits. Most organizations comprehend Twitter in simple terms: More followers means more exposure. But the study shows that it"s not just about those you follow, but those your followers follow—essentially the people in your extended network. The network offers a number of routes for information from fresh sources to get to you. According to the study, some 80 percent of users choose to follow at least 10 media sources, but they are exposed to between 6 and 10 times as many media sources through their friends. People outweigh brands. Many of the biggest Twitter accounts are big media brands such as CNN (TWX) and Time, but the study suggests that Twitter"s active users tend to prefer individuals over outlets. So while the average follower of @NYTimes (NYT) has six followers apiece, individual journalists have followers who boast a median following count of around 100. That gives individual journalists—who are, the study says, more likely to link to a multiplicity of sources—a much wider, more influential network of connections. The inference is that the personal touch of a journalist is more important than the lofty, impersonal tone of publications that largely act as promotion channels for their content. It"s a discovery that reminded me of Twitter"s recent blog post on the science of the hashtag, which found that hashtags explode in usage when they are picked up by individuals with the most dedicated—not necessarily the largest—followings. Active users access a wider range of views. The researchers say that indirect exposure expands political diversity by a "significant amount," despite other studies showing a tendency for social networks to do the opposite. "Other studies have found a stronger tendency of homophily; blogs of different political views rarely linked to each other," they point out. "One possible reason is that a Twitter network encompasses several different relationships—from shared interest, to familial ties, friends, and acquaintances—so political similarity doesn"t necessarily exist in all such ties." This is not to say that Twitter"s creators should be preparing a Nobel Prize-winning speech. Far from it: The influence of its diversity is unknown. It could be that many people who see messages they disagree with simply change their behavior to screen out such material in future. But it shows that there is a potential to do something positive at Twitter. It"s clear there"s much work to be done. The researchers say they want to investigate a number of areas they"ve uncovered, having provided important insights at a time when politics seem more fractious and divided than ever.
2011.04.12
View 10735
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 10