본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
AR
by recently order
by view order
College of Cultural Science selects 'Best English Paper' Recipients
KAIST’s College of Cultural Science (Dean Kim Dong Won) announced the winners of ‘2010 Fall Semester Best English Paper Award’: Excellence Award went to Kwak Ah Young (department of Biology), Seong Du Hyun (undeclared major), Ahn Da In (Biological Chemical Engineering), and nine other students received the Participation Award. Ahn Da In discussed ‘Joyce and Chopin on use of epiphany’, Seong Du Hyun discussed ‘On Kant’s Groundwork for the metaphysics of Morals, its Achievements, and Implications’, and Kwak Ah Young discussed ‘Fact Pattern of Environmental Law’. The ‘Best English Paper’ Award has been awarded to undergraduates since 2009 Fall semester in the Humanities and Social Science Department’s efforts to increase creativity and English writing skills of students attending KAIST. For the 2010 fall semester, each professor in charge went through 1 to 2 papers (among 610 papers admitted across human science subjects) and recommended 29 papers to be discussed with great scrutiny. The evaluation took place throughout January and the 3 papers discussing English Literature, Scientific Philosophy, and Environmental Law were awarded the Excellence Award, and 9 other papers were awarded the Participation Award. Dean of Cultural Science College Kim Dong Won commented, ‘I am very encouraged by the level of papers and is becoming a very large art of the College of Cultural Science’. The chairman of the screening committee, Professor Kim Eun Kyung also commented, ‘the best paper award is helping students better their English levels’ and that ‘in order to form and encourage a sound and structured English paper writing environment, a anti-plagiarism program will be implemented amongst implementing other judging standards’.
2011.02.21
View 10223
Waking Up Is Hard to Do: Scientists have discovered a new mechanism in the core gears of the circadian clock.
The US News & World Report released an article (Feb. 18, 2011) on KAIST’s research collaboration with Northwestern University in the US to identify a gene that regulates the rhythm of a fruit fly’s circadian clock, which may be applied to explain human’s sleep-wake cycle. The research result was published February 17 in the journal Nature. For the link of the US News & World Report article, please go to the following link: http://www.usnews.com/science/articles/2011/02/18/waking-up-is-hard-to-do_print.html
2011.02.21
View 9498
Korean researchers reveal new sea defense model by EurekAlert
The Journal of Defense Modeling and Simulation, a peer review journal devoted to advancing the practice, science and art of modeling and simulation that relate to military and defense purposes. The SAGE Publication that issues the journal released a press release on January 18, 2011, announcing that KAIST researchers in collaboration with other intuitions in Korea devised “improved methods to model underwater warfare, which could aid future decisions about weapons and defense purchases.” Details of the article follow below: http://www.eurekalert.org/pub_releases/2011-01/sp-krr011811.php
2011.01.19
View 8835
Success in differentiating Functional Vascular Progenitor Cells (VPC)
KAIST’s Professor Han Yong Man successfully differentiated vascular progenitor cells from human embryonic stem cells and reversed differentiated stem cells. The research went beyond the current method of synthesis of embryonic body or mice cell ball culture and used the careful alteration of signal transmission system of the human embryonic stem cells to differentiate the formation of vascular progenitor cells. The team controlled the MEK/ERK and BMP signal transmission system that serves an important role in the self replication of human embryonic stem cells and successfully differentiated 20% of the cells experimented on to vascular progenitor cells. The vascular progenitor cells produced with such a method successfully differentiated into cells forming the endodermis of the blood vessel, vascular smooth muscle cells and hematopoietic cells in an environment outside of the human body and also successfully differentiated into blood vessels in nude mice. In addition, the vascular progenitor cell derived from human embryonic cells successfully formed blood vessels or secreted vascular growth factors and increased the blood flow and the necrosis of blood vessels when injected into an animal with limb ischemic illness. The research was funded by the Ministry of Education, Science and Technology, 21st Century Frontier Research and Development Institution’s Cell Application Research Department and Professor Ko Kyu Young (KAIST), Professor Choi Chul Hee (KAIST), Professor Jeong Hyung Min (Cha Medical School) and Doctor Jo Lee Sook (Researcher in Korea Bio Engineering Institute) participated in it. The results of the research was published as the cover paper of the September edition of “Blood (IF:10.55)”, the American Blood Journal and has been patented domestically and has finished registration of foreign PCT. The results of the experiment opened the possibility of providing a patient specific cure using stem cells in the field of blood vessel illness.
2011.01.18
View 12350
Professor Kang Suk Joong receives 'Korea Engineering Award.'
KAIST”s Professor Kang Suk Joong of the Department of Material Science and Engineering received ‘Korea Engineering Award’ from the Ministry of Education, Science and Technology and Korea Research Foundation. The award is given to those professors who have accomplished world class research and results. Professor Kang has potentially redirected the direction of research in the field of the microstructure of materials by explaining the fundamental principle behind how the microstructure of a material that affects the physical properties of the polycrystalline structure and changes through processing. Professor Kang applied the results of his findings in the manufacture of new materials and made significant contributions to Korean Material Engineering Industry and was consequently awarded the award. The ‘Korea Engineering Award’ was thought of in 1994 and a total of 24 recipients were recognized through the award in various fields like electronics, mechanics, chemistry, construction, etc. The recipient is awarded in addition the President’s award and 50million won as prize money. The ceremony for ‘Korea Engineering Award’ and the ‘Young Scientist Award’ was held in Seoul Press Center Press Club on the 22nd of December at 3pm. The Minister of Education, Science and Technology (Lee Joo Ho), member of Board of Directors of the Korea Research Foundation (Kim Byoung Gook), Director of Korea Science and Technology Archive (Jeong Gil Seng), along with the recipients attended the ceremony. In addition, Professor Kang was appointed as Distinguished Professor in March 2010 in recognition of his research accomplishments.
2011.01.18
View 10522
Explanation for the polymerized nucleic acid enzyme's abnormal activation found
KAIST’s Professor Park Hyun Kyu of the Department of Bio Chemical Engineering revealed on the 23rd of December 2010 that his team had successfully developed the technology that uses the metal ions to control the abnormal activation of nucleic acids’ enzymes and using this, created a logic gate, which is a core technology in the field of future bio electrons. The polymerized nucleic acid enzyme works to increase the synthesis of DNA and kicks into action only when the target DNA and primers form complimentary pairs (A and T, C and G). Professor Park broke the common conception and found that it is possible for none complimentary pairs like T-T and C-C to initiate the activation of the enzyme and thus increase the nucleic acid production, given that there are certain metal ions present. What Professor Park realized is that the enzymes mistake the uncomplimentary T-T and C-C pairs (with stabilized structures due to the bonding with mercury and silver ions) as being complimentary base pairs. Professor Park described this phenomenon as the “illusionary polymerase activity.” The research team developed a logic gate based on the “illusionary polymerase activity’ phenomenon.” The logic gate paves the way to the development of future bio electron needed for bio computers and high performance memories. Professor Park commented, “The research is an advancement of the previous research carried on about metal ions and nucleic acid synthesis. Our research is the first attempt at merging the concepts of the two previously separately carried out researches and can be adapted for testing presence of metal ions and development of a new single nucleotide polymorphic gene analysis technology.” Professor Park added that, “Our research is a great stride in the field of nano scale electron element research as the results made possible the formation of accurate logic gates through relatively cost efficient and simple system designs.” On a side note, the research was funded by Korea Research Foundation (Chairman: Park Chan Mo) and was selected as the cover paper for the December issue of ‘Angewandte Chemie International Edition’.
2011.01.18
View 9948
Rise of the mimic-bots that act like we do: Human-machine teamwork.
An online magazine, Technology Marketing Corporation, based in the UK published an article, dated January 8, 2011, on a robot research project led by Professor Jong-Hwan Kim from the Electrical Engineering Department. The article follows below: Technology Marketing Corporation [January 08, 2011] Rise of the mimic-bots that act like we do Human-machine teamwork (New Scientist Via Acquire Media NewsEdge) Rise of the mimic-bots that act like we doA robot inspired by human mirror neurons can interpret human gestures to learn how it should actNow follow meA robot inspired by human mirror neurons can interpret human gestures to learn how it should actA HUMAN and a robot face each other across the room. The human picks up a ball, tosses it towards the robot, and then pushes a toy car in the same direction. Confused by two objects coming towards it at the same time, the robot flashes a question mark on a screen. Without speaking, the human makes a throwing gesture. The robot turns its attention to the ball and decides to throw it back. In this case the robot"s actions were represented by software commands, but it will be only a small step to adapt the system to enable a real robot to infer a human"s wishes from their gestures. Developed by Ji-Hyeong Han and Jong-Hwan Kim at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, the system is designed to respond to the actions of the person confronting it in the same way that our own brains do. The human brain contains specialised cells, called mirror neurons, that appear to fire in the same way when we watch an action being performed by others as they do when we perform the action ourselves. It is thought that this helps us to recognise or predict their intentions. To perform the same feat, the robot observes what the person is doing, breaks the action down into a simple verbal description, and stores it in its memory. It compares the action it observes with a database of its own actions, and generates a simulation based on the closest match. The robot also builds up a set of intentions or goals associated with an action. For example, a throwing gesture indicates that the human wants the robot to throw something back. The robot then connects the action "throw" with the object "ball" and adds this to its store of knowledge. When the memory bank contains two possible intentions that fit the available information, the robot considers them both and determines which results in the most positive feedback from the human?- a smile or a nod, for example. If the robot is confused by conflicting information, it can request another gesture from the human. It also remembers details of each interaction, allowing it to respond more quickly when it finds itself in a situation it has encountered before. The system should allow robots to interact more effectively with humans, using the same visual cues we use. "Of course, robots can recognise human intentions by understanding speech, but humans would have to make constant, explicit commands to the robot," says Han. "That would be pretty uncomfortable."Socially intelligent robots that can communicate with us through gesture and expression will need to develop a mental model of the person they are dealing with in order to understand their needs, says Chris Melhuish, director of the Bristol Robotics Laboratory in the UK. Using mirror neurons and humans" unique mimicking ability as an inspiration for building such robots could be quite interesting, he says. Han now plans to test the system on a robot equipped with visual and other sensors to detect people"s gestures. He presented his work at the Robio conference in Tianjin, China, in December. nAs the population of many countries ages, elderly people may share more of their workload with robotic helpers or colleagues. In an effort to make such interactions as easy as possible, Chris Melhuish and colleagues at the Bristol Robotics Laboratory in the UK are leading a Europe-wide collaboration called Cooperative Human Robotic Interaction Systems that is equipping robots with software that recognises an object they are picking up before they hand it to a person. They also have eye-tracking technology that they use to monitor what humans are paying attention to. The goal is to develop robots that can learn to safely perform shared tasks with people, such as stirring a cake mixture as a human adds milk. (c) 2011 Reed Business Information - UK. All Rights Reserved.
2011.01.10
View 9703
KAIST developed a plastic film board less sensitive to heat.
The research result was made the cover of magazine, Advanced Materials and is accredited to paving the way to commercialize flexible display screens and solar power cells. Transparent plastic and glass cloths, which have a limited thermal expansion needed for the production of flexible display screens and solar power cells, were developed by Korean researchers. The research, led by KAIST’s Professor Byoung-Soo Bae, was funded by the Engineering Research Center under the initiative of the Ministry of Education, Science and Technology and the National Research Foundation. The research result was printed as the cover paper of ‘Advanced Materials’ which is the leading magazine in the field of materials science. Professor Bae’s team developed a hybrid material with the same properties as fiber glass. With the material, they created a transparent, plastic film sheet resistant to heat. Transparent plastic film sheets were used by researchers all over the world to develop devices such as flexible displays or solar power cells that can be fit into various living spaces. However, plastic films are heat sensitive and tend to expand as temperature increases, thereby making it difficult to produce displays or solar power cells. The new transparent, plastic film screen shows that heat expansion index (13ppm/oC) similar to that of glass fiber (9ppm/oC) due to the presence of glass fibers; its heat resistance allows to be used for displays and solar power cells over 250oC. Professor Bae’s team succeeded in producing a flexible thin plastic film available for use in LCD or AMOLED screens and thin solar power cells. Professor Bae commented, “Not only the newly developed plastic film has superior qualities, compared to the old models, but also it is cheap to produce, potentially bringing forward the day when flexible displays and solar panels become commonplace. With the cooperation of various industries, research institutes and universities, we will strive to improve the existing design and develop it further.”
2011.01.05
View 12915
New Year's Message from President Nam-Pyo Suh
President Nam-Pyo Suh delivered a New Year’s message on January 3, 2011. While announcing plans to celebrate the 40th anniversary of KAIST throughout this year including a long-term development strategy for the university, Vision 2025, the president assessed the past accomplishments made in 2010 and laid out future prospects for 2011. The full text of his speech is attached below.
2011.01.05
View 8427
Professor Bae of Industrial Design Wins Good Design Award.
Professor Bae Sang Min’s research team of the Industrial Design Department received a G-Mark on the Product Design Section from the Good Design Awards 2010 organized by the Japan Industrial Design Promotion Organization through the exhibition of a Green Sharing Project, Heartea. Heartea is a tumbler that allows the user to easily know the temperature of the liquid contained inside. Heartea is a name that combines Heart and Tea to refer to a tumbler that contains heart-warming tea. Heartea was designed and produced by Professor Bae’s research team and was funded by GS Caltex. World Vision selected charity targets and oversaw distribution, and all of the sales income (about 200 million won) was donated as a scholarship to teenagers with financial difficulties. The project has begun in 2006, and its accumulative sales are 1.7 billion won. Twenty million won is donated to 147 teenagers every year as scholarship, and through annual sharing camp, social leaders mentor teenagers to help them achieve their dreams. The Good Design Award organized annually by Japan Industrial Design Promotion Organization has a fifty year tradition and is one of the world’s top four design contests with 6,000 submissions from 50 different countries participated. Professor Bae’s team has won three of the top four design contests including the German Red Dot Product Award and the American IDEA Product Award. Along with Heartea, both of foldable MP3 in 2008 and natural humidifier Lovepot in 2009 won an award from these four contests. “Through continuous research, I hope to create the world’s best philanthropy design research center to help Third World countries and the neglected. I want to participate in creating a better world through design,” said Professor Bae.
2010.11.05
View 11119
Minister of Higher Education of Saudi Arabia Visited KAIST to Sign Agreement on Joint Research Projects
Khaled bin Mohammad Al-Anqari, the Minister of Higher Education of Saudi Arabia, visited KAIST on October 26th to conclude a joint agreement with KAIST. The group of Saudi Arabian visitors included Abdullah bin Abdularhman Al-Othman, President of the King Saud University, Osama bin Sadiq Tayeb, President of King Abdulaziz University, and Khalid bin Salih Al-Sultan, President of the best Saudi Arabian technological university, King Fahad University of Petroleum and Minerals. Through research agreement between KAIST and the King Saud University and King Fahad University of Petroleum and Minerals, joint research projects, mutual visitations of research professors, interchange of academic programs, joint seminars and scientific societies will be held to promote the lively interchange between higher education institutions of Korea and Saudi Arabia. In particular, King Saud University and KAIST has signed an agreement on joint research projects in the fields of “Solar-Ocean Thermal Exchange Desalination,” “Develop New Energy Management Service for Residential and Commercial Customers Using Smart Metering and Sensor Network Information” and “Superior Production of Lactic Acid from Saudi Dates Using Bioprocess Technology.” The projects will be funded by the Saudi Arabian government, and their scope will be determined in the future “Compared to the robust industrial economic interactions between the Middle East and Korea, the interchange of the two countries’ higher education institutions has been poor,” said Jong Hyun Kim, Visiting Professor of Nuclear & Quantum Engineering Department of KAIST who will be conducting one of the joint programs with the Electrical Engineering Department of the King Saud University. “Like this joint research, I hope KAIST will, in many different ways, lead the way in cooperating and interacting with higher education institutions of the Middle EAST.” Al-Anquari, Minister of Higher Education of Saudi Arabia, who showed great interest in KAIST’s innovative research and high technology development, expressed his will to put more effort into extending the interchange between universities of Saudi Arabia and of Korea, including KAIST.
2010.11.03
View 14091
2010 International Presidential Forum was held successfully.
On October 11th, the 2010 International Presidential Forum on “The Role of the Research University in an S&T Dominated Era: Expectation & Delivery” was held successfully at the Westin Chosun Hotel in Seoul. The third International Presidential Forum to be held, participants of the 2010 Presidential Forum engaged in an in-depth discussion about the direction that research universities should take in the 21st Century. On its opening, President Nam Pyo Suh delivered a congratulatory message saying, “This forum is a meaningful gathering where research universities will suggest role models and find ways research universities can contribute to the progress of mankind in this century.” Following, Lee Ki Jun, CEO of the Korean Federation of Science and Technology Societies said, “The common goal of the world’s research universities is to solve the problems mankind is facing together. I believe that the discussion we will hold today at the forum will point to the future direction of research universities.” “To produce next generation engineers meeting global standards, exchange and dual degree programs between universities must be strengthened,” said Lars Pallesen, President of the Technical University of Denmark. “Research universities must support the exchange between students beyond cultural and national borders to adapt to the global market.” Ichiro Okura, Vice President of Tokyo Institute of Technology, presented on the “Asian Science and Technology Pioneering Institutes of Research and Education, ASPIRE.” ASPIRE is a community created by the coalition between science and technology universities in the Far East. Its purpose is to contribute to sustainable global growth by educating high-quality human resources and lead Asia’s technology innovation based on science and technology development. “For research universities to solve today’s global issues, universities must create new ideas by performing fundamental studies and developing innovative technology. The financial resources of universities must be focused with choices based on results,” remarked President Suh. Zaini Ujang, Vice-President of the Universiti Teknologi Malaysia stated that “the Malaysian government is planning on converting from a ‘labor-intensive economy’ to an ‘innovative leading economy’ with the goal of joining the advanced countries by 2020. In today’s science and technology era where innovative technology is necessary, research universities have an important role of developing the knowledge environmental system to lead the world economy.” Vice-President Ujang then explained what strategies Malaysian research universities devised in the innovative leading economy era to create research universities that bring creativity and innovation. Tod A. Laursen, President of KUSTAR, said that “KUSTAR has a leading role in bringing science and technology and manpower necessary in converting the oil-centered economy of UAE to a knowledge-based economy. KUSTAR will continuously strengthen international cooperation to become not only the best engineering university in the Arab region but in the world.” At this year’s forum, thirty international presidents and vice presidents from 24 universities in 15 countries including Georgia Tech, Technical University of Denmark, Technion-Israel Institute of Technology, University of Queensland, Tokyo University, Nanyang Technological University, University Teknologi Malaysia and Hong Kong Institute of Science and Technology along with forty national figures such as the presidents of Hanyang University and Handong Global University, governmental bureaucrats and representatives from national business and institutions participated.
2010.10.20
View 14827
<<
첫번째페이지
<
이전 페이지
71
72
73
74
75
76
77
78
79
80
>
다음 페이지
>>
마지막 페이지 96