본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
TR
by recently order
by view order
Professor Sang-Min Bae appears on EBS Global Theme Travel.
"We want to present "hope" by designing schools and homes for the third-world countries, while considering the culture of the nation.” Professor Bae and his team went to Ethiopia, Africa, for "Design for Social Donation and Design Research for isolated third-world nations". Professor Bae commented that, "We have visited for preparatory investigation, experiencing and investigating the life and cultures of the third-world nations in order to design schools and homes." He continued, "From this visit, we want to develop adequate technology catered for the locals and create a design guideline." He added "We also want to propose a new model using design and technology that contributes to social welfare". Meanwhile, EBS team accompanied to cover the report and was broadcasted through "EBS Global Theme Travel.
2012.03.06
View 9321
A Step Closer to Ultra Slim Mobile Phone
Professor Baek Kyung Wook (department of Material Science and Engineering) succeeded in developing an ultra-thin conjugation technique that can perfectly replace the modular contact in electronic devices. The research team developed a compound material using ultra-fine solder-adhesive film and developed the vertical ultrasonic conjugation process thereby making a reliable utra-thin conjugation. The developed technique allowed for very thin and reliable conjugation and will be able to replace the socket type connector and is expected to revolutionize the electronic device industry. In mobile electronic devices like the smartphone, the trend is to incorporate various functional modules like camera, display, touchscreens, etc. in addition to striving for miniaturization of the device. Recently the problem was the fact that the number of modules within the device was increasing due to the incorporation of various functions, and consequently the volume that these modules took up increased as well, which made miniaturization almost impossible. Professor Baek‘s team succeeded in improving upon this problem by creating a compound material that has ultra-fine solder particles that can melt to form alloy fusion with the electrode and thermosetting adhesive film that can wrap around the electrode and provide mechanical protection. The use of this material made it possible to reduce the thickness of the connector by hundredth fold which improved electrical, mechanical properties and highly reliable. From a processing standpoint the conventional conjugation process involved heating the mechanical block and was therefore hard to manage its production and also consumed 1000W and took up to 15 seconds. By contrast, Professor Baek’s team’s new process uses only ultrasound to locally heat and melt the conjugation point itself thereby reducing power consumption to 100W and conjugation time to 1~5 seconds. The technique developed by Professor Baek and Lee Ki Won Doctorate student was awarded Excellent Dissertation Award by world famous journals like the Electronic Components and Technology Conference and is being recognized worldwide.
2012.01.31
View 10715
Quantum Mechanical Calculation Theory Developed
An Electron Density Functional Calculation Theory, based on the widely used quantum mechanical principles and yet accurate and with shortened calculation period, was developed by Korean research team. *Electron Density Functional Calculation Theory: Theory that proves that it is possible to calculate energy and properties with only simple wave equations and electron densities. The research was conducted by Professor Jeong Yoo Sung (Graduate School of EEWS) and Professor William Goddard with support from WCU Foster Project initiated by Ministry of Education, Science and Technology and Korea Research Foundation. The result was published in the Proceedings of the National Academy of Sciences Journal. The research team corrected the error when performing quantum calculations that arises from the length of calculation time and incorrect assumptions and developed a theory and algorithm that is more accurate and faster. The use of wave equations in quantum mechanical calculations results in high accuracy but there is a rapid increase in calculation time and is therefore difficult to implement in large molecules with hundreds, or thousands of atoms. By implementing a low electron density variable with relatively less calculation work, the size of calculable molecule increases but the accuracy decreases. The team focused on the interaction between electrons with different spins to improve upon the speed of calculation in the conventional accurate calculation. The team used the fact that the interaction between electrons with different spins increases as it comes closer together in accordance with the Pauli’s Exclusion Principle. In addition the interaction between electrons are local and therefore can ignore the interactions between far away electrons and still get the total energy value. The team also took advantage of this fact and developed the algorithm that decreased calculation time hundredth fold. Professor Jeong commented that, “So far most of the domestic achievements were made by focusing on integrative researches by calculation science and material design communities but these involved short time frames. In areas that required lengthy time frames like fundamentals and software development, there was no competitive advantage. However this research is significant in that a superior solution was developed domestically”.
2012.01.31
View 12555
New LEDs: Large Spectrum of Colors
Professor Yonghun Cho has discovered that LEDs with hexagonal pyramid structures can emit various colors of light. LEDs, which have been leading the light revolution is a light emitting element that uses the characteristics of semiconductors to emit light upon passing a current, and is being used for lighting, TV, and various signaling devices. In general, the white LED used for lighting has to be constructed by spraying yellow fluorescent material on a blue LED or by creating a complicated circuit where various LED chips function together. Prof.Cho’s research team discovered the fact that when a small hexagonal pyramid structure is formed on the semiconductor composing the LED and a current is passed through this, then each side, edge, and point on the pyramid assumes different energies. Due to the energy differences, lights of bluegreen, yellow, and orange were emitted from the side, edge, and points of the pyramid, respectively. This shows the prospect of displaying white light as well as that of many other colors. Thus, applying the nanopyramidal structure to LEDs will allow the emission of light with a large spectrum with just the flow of the current, enabling a new type of LED light emitting particles that would display various colors from a single LED chip without the use of a fluorescent material. Also, originally, LEDs have had limitations to its efficiency because of its structural characteristics where fluorescent materials had to be sprayed on, but the nanopyramidal structures will overcome this structural barrier to create brighter light
2012.01.31
View 8165
Bio Pharmaceutical Business Center: Now Open
The Signboard Hanging Ceremony for the Bio Pharmaceutical Business Center for the Integrated Research for the field of Bio Pharmaceutics. 150 representatives from various bio pharmaceutics related businesses and institutes were present for this ceremony. The Ministry of Education, Science and Technology placed the Molecular Process research team, Personalized Drug Delivery Medium research team, and the newly formed Cancer Cell Detection using Blood research team at the Bio Pharmaceutical Business Center at KAIST.
2012.01.31
View 9879
2011 International Presidential Forum on Global Research Universities
KAIST’s 4th International Presidential Forum Held in Seoul on November 8, 2011 The largest annual congregation of university presidents in Asia invited leaders from academia, government, and industry for talks on issues related to higher education in the Age of Globalization. Borderless and Creative Education: the ability to cross borders a crucial key to dominate the information era Seoul, Republic of Korea, November 8, 2011—The Korea Advanced Institute of Science and Technology (KAIST) hosted the “2011 International Presidential Forum on Global Research Universities (IPFGRU)” on Tuesday, November 8, 2011 at the Millennium Hilton Hotel in Seoul. With more than 120 participants from 44 institutions in 27 countries present, the full-day forum provided participants with an opportunity to discuss challenges and responsibilities facing higher education in a time of globalization that has resulted from an ever-growing demand for technological innovation. In his plenary speech, Dr. Robert Birgeneau, Chancellor of UC Berkeley, stressed that “Higher educational intuitions must be prepared to drive innovation and enhance competitiveness by educating a highly trained workforce that will have the critical skills necessary to solve problems and lead in today’s interdependent world.” “Finding solutions to the world’s most challenging problems will depend on the ability to cross borders: national borders, border between different fields of discipline and research, and borders between academe, government, and industry,” said Chancellor Birgeneau to address the importance of “borderless and creative education,” the theme of the forum. Other major keynote speakers were Jörg Steinbach, President of Technische Universität Berlin, Lars Pallesen, President of Technical University of Denmark, Paul F. Greenfield, President of University of Queensland, Marcelo Fernandes de Aquino, President of the University of the Sinos Valley (UNISINOS), and Eden Woon, Vice President of the Hong Kong University of Science and Technology. Dr. Nam-Pyo Suh, President of KAIST, gave talks on the university’s new education plan, “The I-Four Education,” at the afternoon session. The four Is are information technology (IT), independent learning, integrated knowledge acquisitions, and an international learning environment. “In this format, there are no formal lectures,” President Suh explained. “A group of students learn together by using the materials available on the internet, doing homework and conducting experiments together. Pre-recorded lectures are delivered in English by I-Four professors, some of them regular KAIST professors and some professors in other countries who participate in the I-Four Program as consulting professors.” He added, “The overall purpose of the I-Four Education Program is to encourage students to learn independently, gain exposure to the best lectures by the most eminent professors in the world, accelerate the development of a global frame of reference in the students by dealing with information available throughout the world, and provide an integrated learning environment by using diverse examples from many disciplines to achieve understanding of basic principles.” The 2011 IPFGRU, the fourth forum since its inception in 2008, rose to prominence in the past years as an international network for leaders of research universities from around the world to share information and exchange views about contemporary issues in higher education. At this year’s forum, entitled “Borderless and Creative Education,” speakers took a deeper look into the transitions and transformations many research universities are undergoing today, delving into the following topics: the development of e-learning and cyber campuses; increased student mobility and international collaborations; multi-disciplinary and convergence approaches in research and education; and methodology of nurturing future global leaders. Participants also discussed experiences and accomplishments earned from their own endeavors to accommodate such changes and presented ways to strengthen internationalization and improve the academic and research competitiveness of universities. The 2011 International Presidential Forum on Global Research Universities (IPFGRU) was organized by KAIST and sponsored by the Ministry of Education, Science and Technology, POSCO, Hyundai Motor Company, Samsung Heavy Industries, S-Oil, and Elsevier Korea.
2011.11.09
View 14584
Fusion performing arts, called space musical, 'NARO' performed at KAIST
In commemoration of the 6th anniversary of the establishment of the Graduate School of Cultural Technology, KAIST organized an English musical show on space at the Auditorium on the 29th and 30th of September. The name of the musical was NARO. The musical was funded by the ‘NaDa Center’ operated by KAIST’s Graduate School of Cultural Technology. The musical was created with participation from adolescents, which told a tale about a genius boy Naro’s journey in space. The musical was composed of two parts, and the basic storyline was about Naro who conducts research based on space, and his friends went on a time travel to the constellation Scorpios; more specifically, it was a Korean traditional children’s story about a brother and sister who became the sun and the moon. Naro and his friends prevent the plot of Tyran, a villan, who plans on destroying the space and Earth by inducing a red giant star, Antares. In preparation for the musical, NaDa Center selected 14 students ranging from elementary to high school students during March of 2011. The selected students met every Saturday and Sunday from March to September for practice; a gargantuan commitment. The theme of the musical is space, the future, and hope, and it does not utilize any stage settings. Instead, it attempts the incorporation of high technology into the stage by using interactive video, laser art, and specially built props. In addition, the entire process from script to performance and advertisement was utilized as an education model to suggest a good fusion between science and technology and cultural arts. The musical ‘NARO’ is a collective effort. Professor Won Kwan Yeon who pioneered the field of Cultural Technology directed the musical, Professor Koo Bon Chul was in charge of the script and music composition, acting was charged to Lee Min Ho, choreography was charged to Han Eun Kyung, astrological reference was charged to Park Seok Jae among other students in the Graduate School of Cultural Technology. Members of the KAIST Acting Club ‘Lee Bak Teo’, Jeong Soo Han, Son Sharon and graduate of Chung Nam National University with vocal music major Yang Su Ji also made appearances. The Space Musical ‘NARO’ was funded by the Korea Astronomy and Space Science Institute, Korea Aerospace Research Institute, and LG School of Multi Culture.
2011.10.10
View 11601
Professor Son Hoon received "Structural Health Monitoring Person of the Year Award."
Professor Son Hoon (42) of the Department of Civil and Environmental Engineering received the “Structural Health Monitoring Person of the Year Award” at an international workshop on structural health monitoring held in Stanford University. The award is given by the editor and advisors of prestigious international magazine, “Journal of Structural Health Monitoring,” to a researcher with the best research record in a year. Professor Son has published 42 SCI level dissertations, registered 17 patents both domestically and internationally, and presented over 100 papers in international journals, for which he was recognized with the award. Professor Son is the first Korean who receives this award. One of the most significant achievements by Professor Son was “reference-free damage diagnosis” that he had developed in 2007. The diagnosis allows for the detection of wear and tear of a structure without having to use the foundation signal from the initial stages of the structure. The diagnosis contributed greatly in increasing the reliability of the signal information received from smart sensors attached to the structure by eliminating the environmental impact like temperature. Professor Son is currently working on green energy structural health monitoring system development related projects. His current work deals with airplanes, bridges, nuclear facilities, high speed railways, wind turbines, and etc. in cooperation with Boeing, United States Air Force Research Institute, Korea Research Foundation, Ministry of Defense Research Institute, Korea Expressway Corporation, POSCO, and etc. In addition, Professor Son successfully adopted a local monitoring method using smart piezoelectric sensors on a bridge in New Jersey as part of the Long Term Bridge Performance Program initiated by the National Highway Bureau. The success was even introduced in New Jersey’s public TV and newspaper agencies. Professor Son was given tenure at a record age of 39 in 2008 and received numerous awards given out by the Ministry of Education and Science and international organizations like the ‘Edward M Curtis’ Professor Award from Purdue University.
2011.10.10
View 11756
KAIST's efforts begin to become the first Korean university establishing a "strategic technology management system."
KAIST completed the signing of business agreement with the Korea Strategic Trade Institute to establish a strategic technology management system on the 22nd of September. The agreement between KAIST and Korea Strategic Trade Institute (under the Ministry of Knowledge Economy) encompasses 1) the establishment of processes for strategic technology management on campus, 2) development and accommodation of management system on par with major countries, and 3) protection and management through continued education and promotion. Strategic technology management is necessary to prevent the illegal distribution of technologies developed in Korea to those countries and organizations of concern. The need for the management system arose due to the fact that technology transfer has become venerable to illegal export of strategic technologies. The agreement between the two parties offer protection to KAIST when exporting strategic technologies as it necessitates the permission of the government prior to the technology transfer.
2011.09.27
View 8967
Bicycle Sharing System "Ta-Shu" Arrives at KAIST.
KAIST has begun providing a bike rental service, called “Ta-Shu,” to its students. This bicycle sharing system, implemented in tandem with the local city government, has been in service since the 7th of September and will allow KAIST students to rent bicycles for travel within campus and even to other parts of the city, Daejeon. The ‘University Pubic-Bicycle Rental System’ is a program in which numbers of bicycles are made available for shared use by students. Initiated by the Ministry of Public Administration and Security, the university expects that more students will use bicycles as part of their daily mobility means through this system.
2011.09.22
View 8913
Review of organophosphonate nerve agent remediation and sensing chemistry
Professor David Churchill, Dept. of Chemistry, KAIST Scientists in Daejeon, South Korea and Lexington, Kentucky (USA) have recently published a review on the subject of nerve agent remediation and probing chemistry (Chemical Reviews, DOI:10.1021/cr100193y). This article endeavored to pursue organophosphonate nerve agent chemistry deeply and comprehensively and to reflect that decontamination / sensing and nerve agents / pesticides are quite inextricable: when one tries to degrade nerve agents one also needs to detect what components are still present “downstream,” etc. Nerve agents and many pesticides also share a common generalized organophosphate / -phosphonate structure. Also, the use of simulant molecules (mimics) and a consideration of the closely related organophosphonate pesticides were also treated comprehensively in the Review. The authors reached back into the literature when developing some sections to make important connections to the contemporary topics of interest. The review also includes industrial insights. Kibong Kim, Olga G. Tsay and David G. Churchill of the Department of Chemistry at KAIST and David A. Atwood of the Department of Chemistry of the University of Kentucky endeavored to "make a variety of connections in research strategies and (sub-) fields to present what is still possible, fruitful, practical, and necessary and to facilitate a current comprehensive molecular level understanding of organophosphonate degradation and sensing," Churchill says. The authors feel that for the time being, researchers in varying research areas “can use this manuscript effectively when considering future research directions.”
2011.09.19
View 9663
KAIST Online Electirc Vehicle Introduced by CNN
CNN aired KAIST’s Online Electric Vehicle (OLEV) on August 29, 2011 in its program called “Eco Solutions” that reports on meeting people with innovative solutions to preserve the planet. The reporter went to Seoul Grand Park, an amusement park and introduced an online electric tram developed by KAIST and operated on a daily basis for park visitors since July 29, 2011. KAIST has designed different types of OLEVs including bus, SUV, and tram. The reporter said that “the online electric tram” at the park provides visitors with a “cleaner, greener, and convenience since it charges as you go.” Currently, three OLEVs are running inside the park, and KAIST plans to replace the rest of existing diesel trams with OLEVs in the near future. CNN Link: http://edition.cnn.com/CNNI/Programs/eco.solutions/index.html Youtube Link: http://www.youtube.com/watch?v=QLzmFFqPJfo
2011.09.09
View 11642
<<
첫번째페이지
<
이전 페이지
51
52
53
54
55
56
57
58
59
60
>
다음 페이지
>>
마지막 페이지 69