본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
LLO
by recently order
by view order
Nobel Laureate Dr. John Michael Kosterlitz Speaks at KAIST
KAIST’s Department of Physics will invite one of three co-recipients of the Nobel Prize in Physics 2016, Professor John Michael Kosterlitz of Brown University, on January 9, 2017, to speak about the exotic states of matter, which is entitled “Topological Defects and Phase Transitions.” Professor Kosterlitz shares the Nobel award with two other researchers, David Thouless and Duncan Haldane. He is considered one of the pioneers in the field of topological phases. In the early 1970s, along with Thouless, he demonstrated that superconductivity could occur at low temperatures and explained the mechanism behind, phase transition, that makes superconductivity disappear at higher temperatures. Over the last decade, topological materials and their applications have been widely studied with the hope of using them in new generations of electronics and superconductors, or in future quantum computers. Details of the lecture follow below: Distinguished Lecture Series by KAIST’s Physics Department · Speaker: Professor John Michael Kosterlitz of the Physics Department, Brown University · Topic: “Topological Defects and Phase Transitions” · Date: January 9, 2017, 4:00 PM · Place: Lecture Hall (#1501), College of Natural Sciences (E6-2)
2017.01.06
View 7561
President Kang Welcomes the New Year with an Upbeat Message
KAIST held a kick-off ceremony on January 2 at the Auditorium on campus to officially welcome the beginning of 2017. In his New Year’s speech, President Sung-Mo Kang, who is slated to complete his term in February, recalled some of the major achievements accomplished under his leadership in the past four years. Upon his inauguration in 2013, President Kang set a goal for KAIST to become a global top 10 university and established Quantum Jump Strategies for qualitative growth through innovative education and research programs. Such initiatives have laid the foundation for KAIST to emerge as one of the world’s best “student-centered, faculty-driven, and innovative research universities.” In 2016, Thomson Reuters named KAIST the world’s sixth most innovative university. President Kang promoted a campus culture that cherishes creativity and a challenging spirit and encouraged university members to increase their interest in entrepreneurship and social responsibility. He reorganized academic structures to offer interdisciplinary education and revamped administrative organizations to streamline university management. On a softer note, he created various channels of communication within the university community to make the campus “happier and united,” which included the establishment of the Customer Satisfaction Center, the Center for Ethics and Human Rights, and coffee meetups. He promised that KAIST would remain committed to leading the frontier of higher education and research, nationally and globally. The university will establish the Graduate School for Interdisciplinary Medical Science, continue to provide university members with opportunities to learn entrepreneurship, extend its efforts to upgrade campus infrastructures, and strive to globalize and diversify the campus. Finally, President Kang praised the tremendous support KAIST has received from across Korea and the globe, including the members of KAIST and its alumni, noting that there were more than 26,000 donations made to the university during his presidency. The full text of President Kang’s New Year message follows below: President Kang's New Year Message Dear Members of KAIST, It is 2017, and the year of the rooster has dawned on us. May you and your family enjoy good health and happiness in the new year, and I hope that you will all fulfill your dreams. In return for the love and trust of the nation’s citizens, KAIST will continue to do its best. Following my inauguration in 2013, I established Quantum Jump Strategies in the first half of my term (2013 to 2014), and I also created a united KAIST during this period. In the second half (2015 to 2016), I promoted innovation through qualitative growth. KAIST has seen astonishing growth in the past four years, and this has laid the foundation to emerge as one of the world’s best Student-Centered, Faculty-Driven, and Innovative Research Universities. Creativity and challenge are the key words serving as the driving force behind national progress. KAIST’s qualitative growth has been achieved through continuous innovation of education and research, promotion of an entrepreneurial spirit, and exercising of social responsibility. KAIST’s education is constantly improving. It has developed a future-oriented educational platform, commensurate with its reputation as a world-class university, after several rounds of reorganization. The interdisciplinary education system at KAIST, based on a harmony of academic excellence and creativity, facilitates efficient operation of its broad undergraduate education and interdisciplinary graduate curriculum. Through a π-shaped education system, the students solidify their foundation at the undergraduate level, and go on to graduate school to gain more wisdom and knowledge through interdisciplinary education and research. Upon graduation, they are recognized as irreplaceable, talented members of society. The newly introduced capstone design curriculum has shifted the paradigm of Korea’s engineering education, placing greater emphasis on real-world applications. With the opportunity to plan realistic projects and identify problems, the students will acquire creativity, practical skills, teamwork, and leadership. Under Education 3.0, KAIST has implemented a student-centered education system. Students participate in self-directed learning using online contents provided before lectures, and gain knowledge and problem-solving skills through collaborative learning with team members during classes. In addition, KAIST is fulfilling its social responsibility by making its lectures available to the public through KAIST’s Massive Open Online Course (MOOC). KAIST is among the world’s top universities in terms of research capacity. The university has been highly ranked by QS and THE for its innovative education and research, and it was recently named by Thomson Reuters as the world’s sixth most innovative university. To ensure continuous developments, KAIST must perform sustainable research for the long run. Ideas aimed at improving humanity must be continuously produced, and the university must acquire the necessary resources to support such research. KAIST should promote a research culture that assesses researchers based on their diligence and conscientiousness rather than how successful they are. The KAIST Grand Challenge 30 Project was launched for KAIST to resolve major issues faced by humanity and to spread its culture of innovation to all. To acquire global competitiveness in the field of biological sciences, KAIST is planning to establish the Graduate School of Interdisciplinary Medical Science in Sejong. From 2018, the government will allocate a budget for the graduate school, which fared well in the preliminary feasibility study. Beginning with the Graduate School of Interdisciplinary Medical Science, KAIST will establish a system for innovative education and research in Sejong, and further strengthen its capacities. KAIST has worked hard to instill an entrepreneurial spirit in its students. It has provided students with many opportunities to learn entrepreneurship, so as to enhance the economic and social value of its activities in education and research. Through the Institute for Startup KAIST (ISK), the university supports students in all stages of entrepreneurship, from ideation to commercialization. The Master of Entrepreneurship & Innovation at the K-School is jointly operated by several departments. Thanks to its active efforts in promoting entrepreneurship such as the opening of ISK Pangyo and the offering of the Social Entrepreneurship MBA (SEMBA), KAIST has produced the highest number of student entrepreneurs in Korea. KAIST’s innovative pursuits in its administration have been highly regarded by organizations around the world. The tenure system, introduced for the first time in Korea, has now stabilized. Its English-only lecture policy and tuition subsidy by GPA have been improved based on feedback from students and experts. KAIST went through a major administrative reorganization in 2013. The reorganization, introduced to integrate similar functions and simplify the decision-making process, enabled KAIST’s administration to adapt flexibly to changes, become function-oriented, assume roles more rationally, and to be more responsive to the needs of customers. With the opening of the Administration Development Education Center, KAIST has improved the quality of administrative services by providing staff in administrative positions with more opportunities for self-development and to attend lectures that improve the efficiency of administrative operations. The university is actively reflecting the opinions of its members through various channels of communication. The school marked a first in Korea when it implemented an ombudsman to mediate between parties in case of conflict. The Customer Satisfaction Center was opened to improve the quality of services on campus, and the Center for Ethics and Human Rights to prevent the infringement of human rights. I have tried to make myself more available to all members of KAIST, so as to freely interact with them without having to arrange separate meetings. The opening of the office of the president, coffee meetups, forums with undergraduate and graduate students, and e-mail exchanges have been tremendously helpful in gaining valuable feedback and improving university operations. KAIST is strongly supported by the citizens of Daejeon. The university has strengthened its ties with Daejeon Metropolitan City, Yuseong District Office, and Chungnam National University. Its efforts have paid off with the opening of a new path connecting Chungnam National University and KAIST, and the KAIST Bridge in front of the main gate. KAIST has encouraged students to reach out to society by serving as tutors for the socially neglected and helping out in making kimchi. By improving its infrastructure in the past four years, KAIST has now established high-quality infrastructure to support its education and research. The Chung Moon Soul Building 2 is now complete, the Academic Cultural Creative Building is underway, and the Main Library is being upgraded. New constructions or remodeling on campus include the opening of Startup KAIST Studio 2, opening of the Biomedical Research Center (Pharmacy), remodeling of International Village C, remodeling of the Semiconductor Building, remodeling of the Auditorium, remodeling of the Mechanical Engineering Building, remodeling of the Startup Village, remodeling of Haejeong Hall and Buildings No. 8 and 9, remodeling of the Outdoor Theater, remodeling of Hwaam Dormitory (tentative), establishment of an eco campus (planting of pine trees), establishment of a safe campus (improvements to roads and pedestrian roads). Besides expanding its infrastructure, KAIST has exerted efforts to make efficient use of existing space by relocating IBS and the Graduate School for Green Growth to Munji Campus. KAIST strives to create a more accommodating atmosphere for international members and to embrace diversity. It has reached its goal of having international faculty, international students, and female faculty account for 10% each of the total school population. Now, it is time to improve this 10:10:10 initiative to a 20:20:20 initiative. In addition, it must continue to improve the common kitchen at Nanum Hall, communicate with international members through regular podcasts, open a Halal Food Cafeteria, establish a bilingual campus, offer joint degrees with outstanding universities, expand overseas internship opportunities, enhance gender equality, and improve the women’s lounge and childcare facilities. In the near future, I believe that KAIST will be a center of attention both at home and abroad. It has attracted an increasing number of undergraduate applicants in the past four years, and admits highly qualified freshmen each year. Students of all levels, including freshmen, have shown great pride in studying at KAIST. Recently, the university has received a high number of donations from students, alumni, and parents. There were more than 26,000 donations in the past four years, amounting to a total of 70.8 billion won. KAIST is also serving as a benchmark institute for similar organizations in and outside of Korea. Some authorities have even requested KAIST to open branch campuses in their countries. These results would not have been possible without your efforts to create a happy campus. Dear Members of KAIST, This New Year’s greetings will be my last as the president of KAIST. The Board of Trustees is selecting a new president, whose inauguration shall fall on February 23, 2017. I will look back fondly on my past four years at KAIST. During the remainder of my term as the president, I will concentrate my efforts to create a happy campus for each and every member. It was a great pleasure and honor to serve as President for the past four years. I am sincerely grateful to all members for playing their part in nurturing KAIST into the world’s best university and in creating a happy campus. You are the future of KAIST, and the driving force behind Korea. I believe you have what it takes to lead developments in the country, and I encourage you to dream bigger. May 2017 be a year in which all members of KAIST fulfill their dreams. Let us work towards our goal of becoming the hub of the fourth industrial revolution and one of the world’s best Student-Centered, Faculty-Driven Research Universities.
2017.01.03
View 8329
Center for Overseas Development Hosts Dominican Republic Officials
The Center for Overseas Development at KAIST invited a group of government and higher education officials from the Dominican Republic and offered them an opportunity to learn about KAIST and other public institutions in Korea. The Dominican delegation, consisting of 20 high-ranking officials from the Ministry of Higher Education, Science and Technology (MESCYT), the Autonomous University of Santo Domingo (UASD), the Pontifical Catholic University (PUCMM), and Santiago University of Technology (UTESA), stayed in Korea for about two weeks, December 4-17, 2016 and visited KAIST, the Korea International Cooperation Agency (KOICA), universities, research centers, and companies. They also participated in meetings, workshops, and lectures to deepen their understanding of Korea. The purpose of the Dominican delegation’s visit was to learn about Korea’s knowledge and experiences acquired over the years from establishing and operating what many view now as some of the leading universities, research organizations, and industries in the world. lácido F. Gomez Ramirez, Deputy Minister of MESCYT, said that their visit would be a good reference when formulating action plans for the growth of science and technology in the Dominican Republic. He added, “We were able to see how Korea has transformed itself into a high-tech nation. We will share Korea’s success stories with our people in the Dominican Republic, for example, referring to them when creating a system to facilitate cooperation among the government, higher education, and industry. I hope our second visit, slated for some time next year, will allow us to discuss cooperation between the two countries in more concrete terms including opening branch offices of Korean companies in our country.” Sung-Hyon Myaeng, Director of KAIST’s Center for Overseas Development, said, “We will continue our support to coordinate more visits by the Dominican Republic and expand cooperation, particularly, in higher education.” The visit was arranged with support from KOICA to offer Dominican senior professionals from higher education and government offices a chance to increase their competency, to promote research activities in science and technology, and to accelerate industry and university collaboration.
2016.12.22
View 6200
Professor Suck-Joo Na Receives the 2016 Humboldt Research Award
The Alexander von Humboldt Foundation, established by the German government in 1953, promotes academic cooperation and exchange among scientists and scholars from Germany and abroad. The foundation has bestowed this year's award to Professor Suck-Joo Na of KAIST's Mechanical Engineering Department in recognition of his lifetime achievements. Professor Na's main interests are in the fields of arc and laser welding, computational fluid dynamics simulation, residual stress and distortion, and design of welded structures. He has received numerous honors and awards including the Research Fellowship Award from the Alexander von Humboldt Foundation (1989), the Excellent Research Paper Award from the Korean Welding and Joining Society (1993), the Charles H. Jennings Memorial Award from the American Welding Society (2003), and the Yoshiaki Arata Award from the International Institute of Welding (2014). The Humboldt Research Award is granted annually to up to 100 academics whose fundamental discoveries, new theories, or insights have had a significant impact on their own discipline and who are expected to continue producing cutting-edge achievements in the future. The award winners also receive a research grant of 60,000 Euros and are invited to work up to one year with colleagues at research institutions in Germany. Nominations for the award are made only by established academic institutions in Germany. Professor Na will collaborate with a research team led by Professor Michael Rethmeier at the Berlin-based Federal Institute for Materials Research and Testing (BAM) to conduct research in laser welding and selective laser melting, as well as the mathematical analysis of these manufacturing processes from July 2017 to the end of February 2018.
2016.12.19
View 7879
A KAIST Team Wins the Chem-E-Car Competition 2016
A KAIST team consisted of four students from the Department of Chemical and Biomolecular Engineering won the Chem-E-Car Competition 2016, which took place on November 13 at the Union Square in San Francisco. The students who participated were Young-Hyun Cha, Jin-Sol Shin, Dae-Seok Oh, and Wan-Tae Kim. Their adviser was Professor Doh Chang Lee of the same department. Established in 1999, the Chem-E-Car is an annual worldwide college competition for students majoring in chemical engineering. The American Institute of Chemical Engineers (AIChE), founded in 1908, is the world’s leading organization for chemical engineering professionals with more than 50,000 members from over 100 countries and hosts this competition every year. A total of 41 university teams including Carnegie Mellon University and Purdue University participated in this year’s competition. KAIST students competed in the event for the first time in 2014 and reached the rank of 28. In 2015, the students placed 16th, and finally, took the first place in last month’s competition, followed by the Georgia Institute of Technology. In the competition, students must design small-scale (20x30x40 cm) automobiles that operate chemically, as well as describe their research and drive their car a fixed distance down a wedge-shaped course to demonstrate the car’s capabilities. In addition to driving a specified distance (15-30 meters), the car must hold a payload of 0-500 mL of water. The organizers tell participants the exact distance and amount of payloads one hour before the competition begins. Winners are chosen based on their finishing time and how close their car reaches the finish line. Thus, students must show sophisticated coordination of chemical reactions to win. The KAIST team designed their car to have a stable power output using a Vanadium redox flow battery developed by Professor Hee Tak Kim of Chemical and Biomolecular Engineering. They employed iodine clock reactions to induce quick and precise chemical reactions to control their car. KAIST’s car finished with the best run coming within 11 cm of the target line; Georgia Tech’s car reached the finish line by 13 cm and New Jersey Institute of Technology’s car by 14 cm. Young-Hyun Cha, one of the four students, said, “When we first designed our car, we had to deal with many issues such as stalls or connection errors. We kept working on fixing these problems through trial and error, which eventually led us to success.” For a news article on KAIST’s win at 2016 Chemi-E-Car Competition by AIChE, see the link below: http://www.aiche.org/chenected/2016/11/koreas-kaist-wins-1st-place-2016-chem-e-car-competition-photos
2016.12.08
View 10974
Professor Young Jae Jang Receives the Grant Award from Mathworks
Professor Young Jae Jang of KAIST’s Industrial and Systems Engineering Department won the Grant Award from Mathworks, Inc., an American developer of mathematical computing software. Headquartered in Massachusetts in the United States, Mathworks has been known for its MATLAB software that is used by many engineers and scientists around the world for algorithm development, data analysis, visualization, and numeric computation. Winners of the Grant Award are selected from proposals submitted by educational institutions in 18 different countries based on their innovative lab curricula and future potential for innovation and creativity. Award winners receive a cash grant of up to USD 40,000 as well as various other forms of support including software and technical guidance for creating a course. Professor Jang has researched combining the concept of industrial engineering education with Lego principles since 2014. He developed Lego-based experimental equipment and utilized it to teach students about difficult ideas, for example, big data and manufacturing technologies needed for Industry 4.0, such as automation, cyber-physical systems, the Internet of Things, and cloud computing. He created an innovative teaching environment where students learn engineering concepts and then conduct experiments on their own to understand the new paradigm of industrial systems. Lego-based education allows students to personalize their learning process, shifting lecture-centered approaches toward learner-oriented approaches. Students apply theories to operate tools and equipment made with Lego, identify problems, and find solutions. In such processes, they can understand the content of their study more easily and efficiently and become more motivated. Professor Jang’s research has attracted a great deal of interest overseas, and he is frequently invited to international conferences as a keynote speaker. Picture: Lego-based Learning Model of Experiment Equipment Developed by Professor Young Jae Jang
2016.12.08
View 6703
KAIST's Doctoral Student Receives a Hoffman Scholarship Award
Hyo-Sun Lee, a doctoral student at the Graduate School of EEWS (Environment, Energy, Water and Sustainability), KAIST, is a recipient of the 2016 Dorothy M. and Earl S. Hoffman Scholarships presented by the American Vacuum Society (AVS). The award ceremony took place during the Society’s 63rd International Symposium and Exhibition on November 6-11, 2016 in Nashville, Tennessee. Lee is the first Korean and foreign student to receive this scholarship. The Hoffman Scholarships were established in 2002 to recognize and encourage excellence in graduate studies in the sciences and technologies of interest to AVS. The scholarships are funded by a bequest from Dorothy M. Hoffman, who was a pioneering member of the Society of Women Engineers and served as the president of AVS in 1974. Lee received the scholarship for her research that detects hot electrons from chemical reactions on catalytic surface using nanodevices. Nano Letters, an academic journal published by the American Chemical Society, described her work in its February 2016 issue as a technology that allows quantitative analysis of hot electrons by employing a new nanodevice and therefore helps researchers understand better the mechanism of chemical reactions on nanocatalytic surface. She also published her work to detect the flow of hot electrons that occur on metal nanocatalytic surface during hydrogen oxidation reactions in Angewandte Chemie. Lee said, “I am pleased to receive this honor from such a world-renowned academic society. Certainly, this will be a great support for my future study and research.” Founded in 1953, AVS is an interdisciplinary, professional society composed of approximately 4,500 members worldwide. It supports networking among academic, industrial, government, and consulting professionals involved in a range of established and emerging science and technology areas such as chemistry, physics, engineering, business, and technology development.
2016.11.17
View 9951
Key Interaction between the Circadian Clock and Cancer Identified
Professor Jae Kyoung Kim and his research team from the Department of Mathematical Sciences at KAIST found that the circadian clock drives changes in circadian rhythms of p53 which functions as a tumor suppressor. Using a differential equation, he applied a model-driven mathematical approach to learn the mechanism and role of p53. Kim’s mathematical modeling has been validated by experimental studies conducted by a research team at Virginia Polytechnic Institute and State University (Virginia Tech) in the United State, which is led by Professor Carla Finkielstein. As a result, the researchers revealed that there is an important link existed between the circadian clock and cancer. The findings of this research were published online in Proceedings of the National Academy of Sciences of the United States of the America (PNAS) on November 9, 2016. The circadian clock in our brain controls behavioral and physiological processes within a period of 24 hours, including making us fall asleep at a certain time by triggering the release of the sleep hormone melatonin in our brain, for example, around 9 pm. The clock is also involved in various physiological processes such as cell division, movement, and development. Disruptions caused by the mismatch of the circadian clock and real time due to chronic late night work, shiftwork, and other similar issues may lead to various diseases such as diabetes, cancer, and heart disease. In 2014, when Kim met with Finkielstein, her research team succeeded in observing the changes of p53 over a period of 24 hours, but could not understand how the circadian clock controls the 24-hour rhythm of p53. It was difficult to determine p53’s mechanism since its cell regulation system is far more complex than other cells To solve the problem, Kim set up a computer simulation using mathematical modeling and ran millions of simulations. Instead of the traditional method based on trial and error experiments, mathematical modeling allowed to save a great deal of time, cost, and manpower. During this process, Kim proved that the biorhythm of p53 and Period2, an important protein in the circadian clock, are closely related. Cells usually consist of a cell nucleus and cytoplasm. While p53 exists in both nucleus and cytoplasm, it becomes more stable and its degradation slows down when it is in the nucleus. Kim predicted that the Period2 protein, which plays a key role in the functioning of the circadian clock, could influence the nucleus entry of the p53 protein. Kim’s predictions based on mathematical modeling have been validated by the Virginia team, thereby revealing a strong connection between the circadian clock and cancer. Researchers said that this research will help explain the cause of different results from numerous anticancer drugs, which are used to normalize the level of p53, when they are administrated at different times and find the most effective dosing times for the drugs. They also believe that this study will play an important role in identifying the cause of increasing cancer rates in shift-workers whose circadian clocks are unstable and will contribute to the development of more effective treatments for cancer. Professor Kim said, “This is an exciting thing that my research can contribute to improving the healthy lives of nurses, police officers, firefighters, and the like, who work in shifts against their circadian rhythms. Taking these findings as an opportunity, I hope to see more active interchanges of ideas between biological sciences and mathematical science in Korea.” This research has been jointly conducted between KAIST and Virginia Tech and supported by the T. J. Park Science Fellowship of POSCO, the National Science Foundation of the United States, and the Young Researcher Program of the National Research Foundation of Korea. Picture 1. The complex interaction between tumor antigen p53 and Period2 (Per2) which plays a major role in the circadian clock as revealed by mathematical simulations and experiments Picture 2. A portion of the mathematical model used in the research Picture 3. Professor Jae Kyoung Kim (third from left) and the Virginia Tech Research Team
2016.11.17
View 7835
Technology to Allow Non-Magnetic Materials to Have Magnetic Properties by Professor Chan-Ho Yang
Professor Chan-Ho Yang and his research team from the Department of Physics at KAIST have developed a technology that allows non-magnetic materials to have magnetic properties or, in reverse, to remove magnetic properties from a magnet using an electric field. Based on this research, it is expected that if magnetic-material-based data storage is developed, applications for high-speed massive data transfer will be possible. The results of this research, with Ph.D. candidate Byung-Kwon Jang as the first author, were published online in Nature Physics on October 3. Very small magnets exist inside of any materials. If the direction of the minuscule magnets is dis-aligned, pointing multiple directions, it is non-magnetic. If the direction is aligned in a certain direction, the material holds magnetic property just like any magnet we normally see. Data storage capacity technology has rapidly advanced to the point where we can easily get a portable hard disk drive (HDD) with terabyte-level storage; however, the increase in storage is inevitably followed by slower data access speed for a storage device. Although HDDs are currently the most widely used data storage devices, their technical applications are limited due to their slow data access speed. Other methods such as solid-state drives (SSDs), floating gates, and resistive switching have been developed as alternatives. Yet, they leave tracks every time data is written, and this can cause fatigue cumulative damage. There have been many attempts to compose cells—the smallest data storage space on a storage device—with magnetic materials as that would enable faster data access speeds and remove fatigue cumulative damage. Generally, the techniques tried by researchers were to use induced magnetic fields through current flow. However, magnetic fields are very difficult to shield and can affect a large area. As a result, they alternate the magnetic property of adjacent cells. Because each cell cannot be adjusted one by one, it cannot also be arranged in a certain direction, and therefore, it is hard to change the magnetic state. Professor Yang and his team adjusted the magnetic state by using magnetoelectric interaction to deal with this issue. Instead of using magnetic fields, magnetoelectric interaction is a method that uses an electric field to adjust the magnetic state. It has the advantage of smaller energy consumption as well. Professor Yang's team demonstrated that cells facing random directions can be arranged in a certain direction by only inducing an electric field. In addition, the reverse was also proved to be feasible. Until this research, most cases of previous findings were only feasible at extremely low temperatures or high temperatures, but the technology developed by the research team is practicable at room temperature by manipulating chemical pressure. It allows for a reversible magnetic state, and moreover, is non-volatile. Therefore, the results of this research are expected to provide the basis for developing next-generation information storage device. Professor Yang said, “The changes in the electric magnetic state will be accompanied by entropy changes” and added, “Our research is expected to open new potential for future applications not only for magnetoelectric devices, but also for thermoelectric effect.” This research has been worked on jointly with Dr. Si-Yong Choi from the Korea Institute of Materials Science, Prof. Yoon-Hee Jeong from the Pohang University of Science and Technology, Dr. Tae-Yeong Koo from the Pohang Accelerator Laboratory, Dr. Kyung-Tae Ko from the Max Planck Institute for Chemical Physics of Solids, Dr. Jun-Sik Lee and Dr. Hendrik Ohldag from the SLAC National Accelerator Laboratory of the United States, and Prof. Jan Seidel from the University of New South Wales of Australia. The research was supported by the Mid-Career Researcher Program of the National Research Foundation of Korea, Global Research Network Support Project, Leading Research Center Support Project (Condensed Quantum Coherence Research Center), Global Frontier Project (Hybrid Interface Materials Research Group), and others. Picture: The concept graphic for the electric-field-induced magnetic phase switching the magnetic direction
2016.11.04
View 8029
Professor Shin's Team Receives the Best Software Defined Network Solution Showcase Award
Professor Seungwon Shin of the Electrical Engineering School at KAIST and his research team won the Best Software Defined Networking (SDN) Solution Showcase Award hosted by the SDN World Congress, one of the biggest network summits held in Europe with over 2,000 participants. This year the conference took place in The Hague, the Netherlands, October 10-14, 2016. SDN is an approach to computer networking that allows network administrators to respond quickly to changing business requirements via a centralized control console and to support the dynamic, scalable computing and storage needs of more modern computing environments such as data centers. Collaborating with researchers from Queen’s University in the United Kingdom and Huawei, a global information and communications technology solutions provider in China, Professor Shin’s team, which is led by doctoral students Seungsoo Lee, Changhoon Yoon, and Jaehyun Nam, implemented a SDN security project called “DELTA.” ATTORESEARCH, a Korean SDN architecture and applications provider, conducted testing and verification for the project. DELTA is a new SDN security evaluation framework with two main functions. It can automatically recognize attack cases against SDN elements across diverse environments and can assist in identifying unknown security problems within a SDN deployment. The DELTA project consists of a control plane, the part of a network that carries signaling traffic and is responsible for routing; a data plane, the part of a network that carries user traffic; and a control channel that connects the two aforementioned planes. These three components have their own agents installed, which are all controlled by an agent manger. The agent manger can automatically detect any spots where the network security is weak. Specifically, the project aimes to defense attacks against OpenFlow protocol, one of the first SDN standards; SDN controllers, a network operating system that is based on protocols; and network switch devices that use OpenFlow protocol. The DELTA project was registered with the Open Networking Foundation, a user-driven organization dedicated to the promotion and adoption of SDN through open standards development, as an open source SDN security evaluation tool. This project is the only open source SDN which has been led by Korean researchers. The SDN World Congress 2016 recognized the need for and importance of the DELTA project by conferring upon it the Best Solution Showcase Award. The Open Networking Foundation also widely publicized this award news. Professor Shin said: “In recent years, SDN has been attracting a large amount of interest as an emerging technology, but there still have not many SDN projects in Korea. This award acknowledges the advancement of Korean SDN technology, showing the potential for Korea to become a leader in SDN research.” Picture: Major Components of the DELTA Project: Agents and Agent Manger
2016.10.25
View 8920
J. Fraser Stoddart, a Former Visiting Professor at KAIST, Wins the 2016 Nobel Prize in Chemistry
J. Fraser Stoddart, who is Northwestern University’s Board of Trustees Professor of Chemistry and head of the Stoddart Mechanostereochemistry Group, received the 2016 Nobel Prize in Chemistry. He shares it with Professor Jean-Pierre Sauvage of the University of Strasbourg in France and Professor Bernard Feringa of the University of Groningen in the Netherlands. Professor Stoddart’s relationship with KAIST dates to his term as a visiting professor from 2011 to 2013 at the Environment, Energy, Water and Sustainability (EEWS) Graduate School. The Nobel Committee awarded the prize to Professor Stoddart in recognition of his pioneering work on artificial molecular machines, a.k.a., nanomachines. A molecular machine is an assembly of a discrete number of molecular components designed to perform machine-like movements as the result of appropriate external stimuli. Like their counterparts in the macroscopic world, molecular machines control mechanical movements and rotations in response to an energy input such as chemical reactions, light, or temperature. The most complex molecular machines, for example, are proteins in cells. Chemists have attempted to imitate these structures for potential applications including smart nanomedicines to track diseases such as cancer cells and deliver drugs to fight them. Other applications include next-generation miniature semiconductor chips, sensors, energy storage, space exploration, and armaments. In 1991, Professor Stoddart developed artificial molecular machines based on a rotaxane. A rotaxane is a mechanically-interlocked molecular architecture in which a dumbbell-shaped molecule is encircled by a molecular ring called a macrocycle. He presented important research on the production of rotaxanes and demonstrated that a macrocycle could move along or rotate freely around the axle, a dumbbell-shaped molecule. Professor Stoddart is also an expert in molecular electronics using molecules on the nanoscale as switches in computers and other electronic devices. In 2007, he created a large-scale ultra-dense memory device with reconfigurable molecular switches, the size of white blood cells but capable of storing information. This was a significant achievement towards the development of molecular computers that are much smaller and more powerful compared to today’s silicon-based computers. KAIST has enjoyed a strong relationship with Professor Stoddart since he served as a visiting professor at the EEWS Graduate School from 2011 to 2013. The graduate school invited him to participate in the Korean government’s science and education program to foster world-class universities in the nation. At KAIST, he taught a course entitled “Nanomachines at the Scale of Molecules.” He also collaborated with Korean researchers on various projects including the publication of a joint research paper, “A Radically Configurable Six-State Compound,” in Science (January 25, 2013) with Professor Jang Wook Choi from the EEWS Graduate School and researchers from the United States, the United Kingdom, and Saudi Arabia. Two doctors with KAIST ties have links to Professor Stoddart as well. In 2012, Dr. Ali Coskun, who worked with him as a postdoctoral research associate at Northwestern University, became an associate professor at the EEWS Graduate School where he conducts research on secondary batteries and gas storage with artificial molecular machines. Dr. Dong Jun Kim, a KAIST graduate, has been working at the Stoddart Mechanostereochemistry Group as a postdoctoral fellow since 2015. Picture 1: Synthesis of a Rotaxane Described in the Journal of the American Chemical Society (JACS) in 1991 Picture 2: Professor J. Fraser Stoddart Giving a Presentation at a Workshop Hosted by the EEWS Graduate School at KAIST in 2011
2016.10.13
View 8651
Direct Utilization of Elemental Sulfur for Microporous Polymer Synthesis
Using elemental sulfur as an alternative chemical feedstock, KAIST researchers have produced novel microporous polymers to sift CO2 from methane in natural-gas processing. Methane, a primary component of natural gas, has emerged recently as an important energy source, largely owing to its abundance and relatively clean nature compared with other fossil fuels. In order to use natural gas as a fuel, however, it must undergo a procedure called “hydrodesulfurization” or “natural gas sweetening” to reduce sulfur-dioxide emissions from combustion of fossil fuels. This process leads to excessive and involuntary production of elemental sulfur. Although sulfur is one of the world’s most versatile and common elements, it has relatively few large-scale applications, mostly for gunpowder and sulfuric acid production. Thus, the development of synthetic and processing methods to convert sulfur into useful chemicals remains a challenge. A research team led by Professor Ali Coskun from the Graduate School of EEWS (Energy, Environment, Water and Sustainability) at Korea Advanced Institute of Science and Technology (KAIST) has recently introduced a new approach to resolving this problem by employing elemental sulfur directly in the synthesis of microporous polymers for the process of natural-gas sweetening. Natural gas, containing varying amounts of carbon dioxide (CO2) and hydrogen sulfide (H2S), is generally treated with amine solutions, followed by the regeneration of these solutions at increased temperatures to release captured CO2 and H2S. A two-step separation is involved in removing these gases. The amine solutions first remove H2S, and then CO2 is separated from methane (CH4) with either amine solutions or porous sorbents such as microporous polymers. Using elemental sulfur and organic linkers, the research team developed a solvent and catalyst-free strategy for the synthesis of ultramicroporous benzothiazole polymers (BTAPs) in quantitative yields. BTAPs were found to be highly porous and showed exceptional physiochemical stability. In-situ chemical impregnation of sulfur within the micropores increased CO2 affinity of the sorbent, while limiting diffusion of CH4. BTAPs, as low-cost, scalable solid-sorbents, showed outstanding CO2 separation ability for flue gas, as well as for natural and landfill gas conditions. The team noted that: “Each year, millions of tons of elemental sulfur are generated as a by-product of petroleum refining and natural-gas processing, but industries and businesses lacked good ideas for using it. Our research provides a solution: the direct utilization of elemental sulfur into the synthesis of ultramicroporous polymers that can be recycled back into an efficient and sustainable process for CO2 separation. Our novel polymeric materials offer new possibilities for the application of a little-used natural resource, sulfur, to provide a sustainable solution to challenging environmental issues.” This work was published online in Chem on September 8, 2016 and also highlighted in C&EN (Chemical & Engineering News) by the American Chemical Society (ACS) on September 19, 2016. The research paper was entitled “Direct Utilization of Elemental Sulfur in the Synthesis of Microporous Polymers for Natural Gas Sweetening.” (DOI: 10.1016/j.chempr.2016.08.003) Figure 1. A Schematic Image of Direct Utilization of Elemental Sulfur This image shows direct utilization of elemental sulfur in the synthesis of microporous polymers and its gas separation performance. Figure 2. BTAP’s Breakthrough Experiment under Pre-mixed Gas Conditions This data presents the breakthrough measurements for CO2-containing binary gas-mixture streams with different feed-gas compositions to investigate the CO2 capture capacity of ultramicroporous benzothiazole polymers (BTAPs) for large-scale applications under simulated conditions of natural and landfill gases.
2016.10.05
View 9133
<<
첫번째페이지
<
이전 페이지
31
32
33
34
35
36
37
38
39
40
>
다음 페이지
>>
마지막 페이지 72