본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Graduate+School+of+EEWS
by recently order
by view order
High Capacity Molecular Storage Technology Developed by KAIST Professor Omar M. Yaghi
KAIST research team has succeeded in developing the technology that allows high capacity protein storage. Professor Omar M. Yaghi (Graduate School of EEWS) and his research team succeeded in developing the core technology that enables the storage of various types of proteins by developing a metal organic structure. The result of their research was published in the May edition of Science magazine. The newly developed technology can store various types and sizes of proteins. This property is expected to pave way to: 1) development of high capacity, high integration drugs 2) development of virus separation compounds 3) selective removal of protein causing negative reactions in the body 4) permanent preservation of rare polymeric proteins, among other expectations. In addition it becomes possible to selectively remove and preserve all the body’s cells including stem cells which will aid the development of cures for incurable diseases and increase life expectancy and medical technology in general. Conventional metal-organic structure used 7 Angstrom large small single molecules and therefore could not be used in the storage of large molecules or proteins. Its usability was proven only as potential high capacity gas storage structure. In addition the internal structure of the metal organic structure is cross linked which made it even more difficult to store large proteins within the structure. Professor Yaghi’s team used molecular structure over 5nm in length in the development of the metal-organic structure to solve the problem associated with size of structure. The ordered structure of the structure’s pore was observed for the first time using Transmission Electron Microscope. The new structure enables the ordered storage of large proteins and was able to store vitamin and proteins like myoglobin at high capacity for the first time in the world.
2012.05.30
View 8320
Exhibition of Investment Demonstration on EEWS Research Held
- Five winners of business-planning project exhibition hold exhibition towards thirteen Angel Investors. Venture capital firm and industry investors are investing for themselves on the Green Growth Project of KAIST, which strives for solutions of global issues, such as; energy depletion, environment pollution and sustainable development. KAIST awarded the winner of "EEWS business-planning exhibition competition" and held investment demonstration exhibition. The exhibition is opened by the winners of the competition and held towards the firms and inventors encouraging capital on green business project and green technologies. The venture capital firms that participated in this exhibition were; Coolidge Corner Investment, Dae-Duk Investment Corp, KPM, Locus Capital Partners and Bo-Gwang Investment. The industry investors that participated were: Samsung C&T Corp, Cheil Industry, Dasan Networks, Hanhwa L&C, thirteen companies in total. The goal of EEWS Exhibition is to encourage the commercialization of research and development. It was co-hosted by DFJ Athena LLC and Ilshin ventures. The competition was divided into business planning section and business technology section. Grand prize on green growth went to Professor Joong-Myeon Bae who suggested "Eco-friendly hydrogen fuel cells", runner-up prize went to "Real-time measuring of NOx on Eco-friendly diesels" by Jin-Su Park, the technology director of CIOS. Grand prize of green technology went to "Highly-refractive, heat resisting hybrimer LED sack’ by Byung-Su Bae, professor of new material engineering, participation award went to ‘ITO-Free touch screen for smart phone’ by Min-yang Yang, professor of the department of Mechanical Engineering. A representative of KAIST said those of the firms and investors who have gone through commercialization showed interest on the creativity and the high level of the product. Jae-Kyu Lee, the head of EEWS who supervised the whole exhibition mentioned that, "EEWS Planning Group is consistently going to come up with innovative results” and that “Angel Investors showed enthusiasm. The representatives of Venture capital firm even considered participating as the jury of the competition in the future.” [Definition] EEWS stands for Energy depletion, Environment pollution, Water shortages and Sustainability, a project for the solution of such global issues promoted by KAIST.
2012.03.06
View 9407
Quantum Mechanical Calculation Theory Developed
An Electron Density Functional Calculation Theory, based on the widely used quantum mechanical principles and yet accurate and with shortened calculation period, was developed by Korean research team. *Electron Density Functional Calculation Theory: Theory that proves that it is possible to calculate energy and properties with only simple wave equations and electron densities. The research was conducted by Professor Jeong Yoo Sung (Graduate School of EEWS) and Professor William Goddard with support from WCU Foster Project initiated by Ministry of Education, Science and Technology and Korea Research Foundation. The result was published in the Proceedings of the National Academy of Sciences Journal. The research team corrected the error when performing quantum calculations that arises from the length of calculation time and incorrect assumptions and developed a theory and algorithm that is more accurate and faster. The use of wave equations in quantum mechanical calculations results in high accuracy but there is a rapid increase in calculation time and is therefore difficult to implement in large molecules with hundreds, or thousands of atoms. By implementing a low electron density variable with relatively less calculation work, the size of calculable molecule increases but the accuracy decreases. The team focused on the interaction between electrons with different spins to improve upon the speed of calculation in the conventional accurate calculation. The team used the fact that the interaction between electrons with different spins increases as it comes closer together in accordance with the Pauli’s Exclusion Principle. In addition the interaction between electrons are local and therefore can ignore the interactions between far away electrons and still get the total energy value. The team also took advantage of this fact and developed the algorithm that decreased calculation time hundredth fold. Professor Jeong commented that, “So far most of the domestic achievements were made by focusing on integrative researches by calculation science and material design communities but these involved short time frames. In areas that required lengthy time frames like fundamentals and software development, there was no competitive advantage. However this research is significant in that a superior solution was developed domestically”.
2012.01.31
View 10319
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2