본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
NT
by recently order
by view order
Professor Tek-jin Nam Elected to DSR Int’l Advisory Council
Professor Tek-jin Nam from the Department of Industrial Design was elected to serve on the first International Advisory Council (IAC) of the Design Research Society (DRS). The DRS, an academic society in the field of design research, was founded in the UK in 1966 with the mission of developing and promoting design research. The IAC is newly established under the new DRS governance structure, and its members are selected from distinguished design researchers recommended by DRS members around the globe. The new IAC members will carry out various activities offered by the DRS, which include innovating design research, strengthening the design researchers’ network and developing policies to nurture new researchers.
2020.05.22
View 4455
Visualization of Functional Components to Characterize Optimal Composite Electrodes
Researchers have developed a visualization method that will determine the distribution of components in battery electrodes using atomic force microscopy. The method provides insights into the optimal conditions of composite electrodes and takes us one step closer to being able to manufacture next-generation all-solid-state batteries. Lithium-ion batteries are widely used in smart devices and vehicles. However, their flammability makes them a safety concern, arising from potential leakage of liquid electrolytes. All-solid-state lithium ion batteries have emerged as an alternative because of their better safety and wider electrochemical stability. Despite their advantages, all-solid-state lithium ion batteries still have drawbacks such as limited ion conductivity, insufficient contact areas, and high interfacial resistance between the electrode and solid electrolyte. To solve these issues, studies have been conducted on composite electrodes in which lithium ion conducting additives are dispersed as a medium to provide ion conductive paths at the interface and increase the overall ionic conductivity. It is very important to identify the shape and distribution of the components used in active materials, ion conductors, binders, and conductive additives on a microscopic scale for significantly improving the battery operation performance. The developed method is able to distinguish regions of each component based on detected signal sensitivity, by using various modes of atomic force microscopy on a multiscale basis, including electrochemical strain microscopy and lateral force microscopy. For this research project, both conventional electrodes and composite electrodes were tested, and the results were compared. Individual regions were distinguished and nanoscale correlation between ion reactivity distribution and friction force distribution within a single region was determined to examine the effect of the distribution of binder on the electrochemical strain. The research team explored the electrochemical strain microscopy amplitude/phase and lateral force microscopy friction force dependence on the AC drive voltage and the tip loading force, and used their sensitivities as markers for each component in the composite anode. This method allows for direct multiscale observation of the composite electrode in ambient condition, distinguishing various components and measuring their properties simultaneously. Lead author Dr. Hongjun Kim said, “It is easy to prepare the test sample for observation while providing much higher spatial resolution and intensity resolution for detected signals.” He added, “The method also has the advantage of providing 3D surface morphology information for the observed specimens.” Professor Seungbum Hong from the Department of Material Sciences and Engineering said, “This analytical technique using atomic force microscopy will be useful for quantitatively understanding what role each component of a composite material plays in the final properties.” “Our method not only will suggest the new direction for next-generation all-solid-state battery design on a multiscale basis but also lay the groundwork for innovation in the manufacturing process of other electrochemical materials.” This study is published in ACS Applied Energy Materials and supported by the Big Science Research and Development Project under the Ministry of Science and ICT and the National Research Foundation of Korea, the Basic Research Project under the Wearable Platform Materials Technology Center, and KAIST Global Singularity Research Program for 2019 and 2020. Publication:Kim, H, et al. (2020) ‘Visualization of Functional Components in a Lithium Silicon Titanium Phosphate-Natural Graphite Composite Anode’. ACS Applied Energy Materials, Volume 3, Issue 4, pp. 3253-3261. Available online at https://doi.org/10.1021/acsaem.9b02045 Profile: Seungbum Hong Professor seungbum@kaist.ac.kr http://mii.kaist.ac.kr/ Materials Imaging and Integration Laboratory Department of Material Sciences and Engineering KAIST
2020.05.22
View 8671
Professor Youngchul Kim Joins Presidential Commission on Architecture Policy
Professor Youngchul Kim from the Department of Civil and Environmental Engineering, who is also the Director of the Smart City Research Center at KAIST, was appointed as a commissioner of the 6th Presidential Commission on Architecture Policy on May 19. Professor Kim will contribute to coordinating and deliberating national architecture and urban development policies. He will serve a two-year term beginning this month. The Presidential Commission on Architecture Policy is made up of 30 commissioners. Nineteen members, including Professor Kim, are experts from the private sector, and the rest include the Minister of Land, Infrastructure, and Transport, the Minister for Environment, and other government officials. The non-governmental commissioners represent a diverse mixture of genders, ages, and regions for the balanced development of the nation. (END)
2020.05.21
View 5793
The 10th KINC Fusion Research Awardees
The KAIST Institute for NanoCentury (KINC) recognized three distinguished researchers whose convergence studies made significant impacts. The KINC presented the 10th KINC Fusion Research Awards during a ceremony that took place at KAIST’s main campus in Daejeon on May 19. This year’s ‘best’ convergence research award went to a joint research group led by Professor Hee Tak Kim from the Department of Chemical and Biomolecular Engineering and Professor Sang Ouk Kim from the Department of Materials Science and Engineering. Their research, featured in the December 27 issue of Advanced Materials as a front cover article last year, introduced the world’s first high-energy efficiency, membraneless, flowless, zinc-bromine battery. This study, in which research professor Gyoung Hwa Jeong, postdoctoral researcher Yearin Byun, and PhD candidate Ju-Hyuck Lee took part as co-lead authors, is deemed as an example of a best practice in convergence research in which two groups’ respective expertise in the fields of carbon materials and electrochemical analysis created a synergistic effect. Professor Bumjoon Kim from the Department of Chemical and Biomolecular Engineering was also recognized for having published the most interdisciplinary research papers on polymer electronics and nanomaterials at home and abroad. Professor Hee-Tae Jung, the Director of KINC and the host of the KINC Fusion Research Awards, said, “The KINC is happy to announce the 10th awardees in nano-fusion research this year. Since convergence is crucial for making revolutionary changes, the importance of convergence studies should be recognized. Our institute will spare no effort to create a research environment suitable for convergence studies, which will be crucial for making a significant difference.” The KINC was established in June 2006 under the KAIST Institute with the mission of facilitating convergence studies by tearing down boarders among departments and carrying out interdisciplinary joint research. Currently, the institute is comprised of approximately 90 professors from 13 departments. It aims to become a hub of university institutes for nano-fusion research. (END)
2020.05.19
View 11748
Highly Efficient Charge-to-Spin Interconversion in Graphene Heterostructures
Researchers present a new route for designing a graphene-based active spintronic component KAIST physicists described a route to design the energy-efficient generation, manipulation and detection of spin currents using nonmagnetic two-dimensional materials. The research team, led by Professor Sungjae Cho, observed highly efficient charge-to-spin interconversion via the gate-tunable Rashba-Edelstien effect (REE) in graphene heterostructures. This research paves the way for the application of graphene as an active spintronic component for generating, controlling, and detecting spin current without ferromagnetic electrodes or magnetic fields. Graphene is a promising spintronic component owing to its long spin diffusion length. However, its small spin-orbit coupling limits the potential of graphene in spintronic applications since graphene cannot be used to generate, control, or detect spin current. “We successfully increased the spin-orbit coupling of graphene by stacking graphene on top of 2H-TaS2, which is one of the transition metal dichalcogenide materials with the largest spin-orbit coupling. Graphene now can be used to generate, control, and detect spin current,” Professor Cho said. The Rashba-Edelstein effect is a physical mechanism that enables charge current-to-spin current interconversion by spin-dependent band structure induced by the Rashba effect, a momentum-dependent splitting of spin bands in low-dimensional condensed matter systems. Professor Cho’s group demonstrated the gate-tunable Rashba-Edelstein effect in a multilayer graphene for the first time. The Rahsba-Edelstein effect allows the two-dimensional conduction electrons of graphene to be magnetized by an applied charge current and form a spin current. Furthermore, as the Fermi level of graphene, tuned by gate voltage, moves from the valence to conduction band, the spin current generated by graphene reversed its spin direction. This spin reversal is useful in the design of low-power-consumption transistors utilizing spins in that it provides the carrier “On” state with spin up holes (or spin down electrons) and the "Off" state with zero net spin polarization at so called “charge neutrality point” where numbers of electrons and holes are equal. “Our work is the first demonstration of charge-to-spin interconversion in a metallic TMD (transition-metal dichalcogenides) and graphene heterostructure with a spin polarization state controlled by a gate. We expect that the all-electrical spin-switching effect and the reversal of non-equilibrium spin polarization by the application of gate voltage is applicable for the energy-efficient generation and manipulation of spin currents using nonmagnetic van der Waals materials,” explained Professor Cho. This study (https://pubs.acs.org/doi/10.1021/acsnano.0c01037) was supported by the National Research Foundation of Korea. Publication: Lijun Li, Jin Zhang, Gyuho Myeong, Wongil Shin, Hongsik Lim, Boram Kim, Seungho Kim, Taehyeok Jin, Stuart Cavill, Beom Seo Kim, Changyoung Kim, Johannes Lischner, Aires Ferreira, and Sungjae Cho, Gate-Tunable Reversible Rashba−Edelstein Effect in a Few-Layer Graphene/2H-TaS2 Heterostructure at Room Temperature. ACS Nano 2020. Link to download the paper: https://pubs.acs.org/doi/10.1021/acsnano.0c01037 Profile: Professor Sungjae Cho, PhD sungjae.cho@kaist.ac.kr http://qtak.kaist.ac.kr Department of Physics Korea Advanced Institute of Science and Technology (KAIST) https://www.kaist.ac.kr Daejeon 34141, Korea
2020.05.18
View 8340
New Charter of Respect and Loyalty between Professors and Graduate Students
KAIST established a ‘Charter of Respect and Loyalty between Professors and Graduate Students’. This new charter states measures to build trust between professors and graduate students, and improve the working conditions of graduate students. KAIST President Sung-Chul Shin and President of the KAIST Graduate Student Association (GSA) Hye-Jeong Han signed the charter as representatives of the professors and graduate students on May 18. KAIST has become the first university in Korea to officially proclaim a promise between the school and the student council for the betterment of conditions for graduate students, and the first to specifically guarantee full-time graduate students’ vacations. Graduate students have a unique status as both students receiving education and employees performing lab research. The GSA explained that “however, in reality, this unique status places them in a blind spot where they are not being fully entitled to their rights neither as employees nor students.” The newly established charter is a set of promises made between professors and graduate students to uphold the values of respect and loyalty, and to establish trust in each other. Professors should treat each student not only as someone they should teach thoroughly, but also as a human being who should be respected. The graduate student should also respect the professor, and diligently perform their educational and research duties. The charter also includes provisions stating that professors should provide minimum grants for the encouragement of research and education to the graduate students transparently and reasonably. In addition, professors must define a fixed number of hours that graduates students have to participate in education and research projects, and guarantee vacation leave for graduate students. Degree and graduation requirements should be clearly defined, and graduate students should devote themselves to education and research, and adhere to research ethics and safety measures. (END)
2020.05.18
View 4201
Hubo Debuts as a News Anchor
HUBO, a humanoid robot developed by Professor Jun-Ho Oh’s team, made its debut as a co-anchor during the TJB prime time news 8 on May 14. “Un-contact" became the new normal after Covid-19 and many business solutions are being transformed using robotics. HUBO made two news reports on contactless services using robots in medical, manufacturing, and logistics industries. HUBO 2, the second generation of HUBO, appeared as a special anchor on the local broadcasting network’s special program in celebration of its 25th anniversary. HUBO is the champion of the 2015 DARPA Robotics Challenge held in the USA. Its FX-2 riding robot also participated in the Olympic torch relay during the 2018 PyeongChang Winter Olympics. Click here to watch a full video of HUBO anchoring the news. (END)
2020.05.14
View 9872
Simple Molecular Reagents to Treat Alzheimer’s Disease
- Researchers report minimalistic principles for designing small molecules with multiple reactivities against dementia. - Sometimes the most complex problems actually have very simple solutions. A group of South Korean researchers reported an efficient and effective redox-based strategy for incorporating multiple functions into simple molecular reagents against neurodegenerative disorders. The team developed redox-active aromatic molecular reagents with a simple structural composition that can simultaneously target and modulate various pathogenic factors in complex neurodegenerative disorders such as Alzheimer’s disease. Alzheimer’s disease is one of the most prevalent neurodegenerative disorders, affecting one in ten people over the age of 65. Early-onset dementia also increasingly affects younger people. A number of pathogenic elements such as reactive oxygen species, amyloid-beta, and metal ions have been suggested as potential causes of Alzheimer’s disease. Each element itself can lead to Alzheimer’s disease, but interactions between them may also aggravate the patient’s condition or interfere with the appropriate clinical care. For example, when interacting with amyloid-beta, metal ions foster the aggregation and accumulation of amyloid-beta peptides that can induce oxidative stress and toxicity in the brain and lead to neurodegeneration. Because these pathogenic factors of Alzheimer’s disease are intertwined, developing therapeutic agents that are capable of simultaneously regulating metal ion dyshomeostasis, amyloid-beta agglutination, and oxidative stress responses remains a key to halting the progression of the disease. A research team led by Professor Mi Hee Lim from the Department of Chemistry at KAIST demonstrated the feasibility of structure-mechanism-based molecular design for controlling a molecule’s chemical reactivity toward the various pathological factors of Alzheimer’s disease by tuning the redox properties of the molecule. This study, featured as the ‘ACS Editors’ Choice’ in the May 6th issue of the Journal of the American Chemical Society (JACS), was conducted in conjunction with KAIST Professor Mu-Hyun Baik’s group and Professor Joo-Young Lee’s group at the Asan Medical Center. Professor Lim and her collaborators rationally designed and generated 10 compact aromatic molecules presenting a range of redox potentials by adjusting the electronic distribution of the phenyl, phenylene, or pyridyl moiety to impart redox-dependent reactivities against the multiple pathogenic factors in Alzheimer’s disease. During the team’s biochemical and biophysical studies, these designed molecular reagents displayed redox-dependent reactivities against numerous desirable targets that are associated with Alzheimer’s disease such as free radicals, metal-free amyloid-beta, and metal-bound amyloid-beta. Further mechanistic results revealed that the redox properties of these designed molecular reagents were essential for their function. The team demonstrated that these reagents engaged in oxidative reactions with metal-free and metal-bound amyloid-beta and led to chemical modifications. The products of such oxidative transformations were observed to form covalent adducts with amyloid-beta and alter its aggregation. Moreover, the administration of the most promising candidate molecule significantly attenuated the amyloid pathology in the brains of Alzheimer’s disease transgenic mice and improved their cognitive defects. Professor Lim said, “This strategy is straightforward, time-saving, and cost-effective, and its effect is significant. We are excited to help enable the advancement of new therapeutic agents for neurodegenerative disorders, which can improve the lives of so many patients.” This work was supported by the National Research Foundation (NRF) of Korea, the Institute for Basic Science (IBS), and the Asan Institute for Life Sciences. Image credit: Professor Mi Hee Lim, KAIST Image usage restrictions: News organizations may use or redistribute this image, with proper attribution, as part of the news coverage of this paper only. Publication: Kim, M. et al. (2020) ‘Minimalistic Principles for Designing Small Molecules with Multiple Reactivities against Pathological Factors in Dementia.’ Journal of the American Chemical Society (JACS), Volume 142, Issue 18, pp.8183-8193. Available online at https://doi.org/10.1021/jacs.9b13100 Profile: Mi Hee Lim Professor miheelim@kaist.ac.kr http://sites.google.com/site/miheelimlab Lim Laboratory Department of Chemistry KAIST Profile: Mu-Hyun Baik Professor mbaik2805@kaist.ac.kr https://baik-laboratory.com/ Baik Laboratory Department of Chemistry KAIST Profile: Joo-Yong Lee Professor jlee@amc.seoul.kr Asan Institute for Life Sciences Asan Medical Center (END)
2020.05.11
View 12718
Professor Sukyung Park Named Presidential Science and Technology Adviser
Professor Sukyung Park from the Department of Mechanical Engineering was appointed as the science and technology adviser to the President Jae-in Moon on May 4. Professor Park, at the age of 47, became the youngest member of the president’s senior aide team at Chong Wa Dae. A Chong Wa Dae spokesman said on May 4 while announcing the appointment, “Professor Park, a talent with a great deal of policymaking participation in science and technology, will contribute to accelerating the government’s push for science and technology innovation, especially in the information and communications technology (ICT) sector.” Professor Park joined KAIST in 2004 as the first female professor of mechanical engineering. She is a biomechanics expert who has conducted extensive research on biometric mechanical behaviors. Professor Park is also a member of the KAIST Board of Trustees. Before that, she served as a senior researcher at the Korea Institute of Machinery and Materials (KIMM) as well as a member of the Presidential Advisory Council on Science and Technology. After graduating from Seoul Science High School as the first ever two-year graduate, Professor Park earned a bachelor and master’s degrees in mechanical engineering at KAIST. She then finished her Ph.D. from the University of Michigan. (END)
2020.05.06
View 11170
Long Economic Depressions and Disparities Loom in the Wake of the COVID-19
"Global Cooperation for Managing Data Key to Mitigating the Impacts Around the World" <Full recorded video of the GSI-IF2020> The COVID-19 pandemic will lead to long economic depressions around the entire world. Experts predicted that the prevalent inequities among the countries, regions, and individuals will aggravate the economic crisis. However, crises always come with new opportunities and international cooperation and solidarity will help creating a new normal in the post-coronavirus era. In a very basic but urgent step, global cooperation for managing data is the key to respond to COVID-19 since medicine and healthcare are intertwined with data science, said experts during an online international forum hosted by the Global Strategy Institute at KAIST on April 22. KAIST launched its think-tank, the Global Strategy Institute (GSI), in February. The GSI aims to identify global issues proactively and help make breakthroughs well aligned with solid science-based policies. The inaugural forum of the GSI focused on how the COVID-19 pandemic would impact socio-economic, scientific, and political landscapes, under the theme “Global Cooperation in the Coronavirus Era.” In his opening remarks, KAIST President Sung-Chul Shin stressed that future global governance will be dominated by the power of science and technology. “If we can implement efficient policies together with troubleshooting technology for responding to future crises, we will emerge stronger than before,” he said. President Shin said ‘the Korean model’, which is being recognized as a shining example for dealing with the pandemic, is the result of collaborations combining the creativity of the private sector, the public sector’s strong infrastructure, and the full support of the citizens. He added, “Without the technological prowess coming from the competent R&D power of Korea, we could not achieve these impressive results.” “Creative collaboration among the private and public sectors, along with research universities from around the world, will help shore up global resilience against the epidemic. We should work together to build a world of growing prosperity,” President Shin said. Prime Minister Sye-Kyun Chung, who is in charge of the Central Disaster and Safety Countermeasures Headquarters in Korea, stressed global solidarity in his welcoming remarks, saying that “We need to share information and rely on the strength of our connections, rather than retreating into nationalistic isolation.” Peter Lee, Vice President of the Microsoft Healthcare, pointed out in his welcoming remarks three critical sectors for global cooperation: medicine and healthcare, public health and prevention, and life and the economy. He emphasized the rule of thumb for managing data, saying that data in these fields should be open, standardized, and shared among countries to combat this global pandemic. During a keynote session, Director General of the International Vaccine Institute (IVI) Jerome Kim described the challenges that go along with developing a vaccine. Dr. Kim said that only 7% of vaccine candidates go through the clinical trial stages, and it will take five to 10 years to completely prove a new vaccine’s safety after completing three stages of clinical tests. “It’s very challenging to develop the vaccine for COVID-19 within 12 to 15 months,” said Dr. Kim. He added that 78 out of 115 candidates are currently undergoing clinical trials around the world. There are five groups, including Moderna, Inovio, Jenner Institute, CanSino, and the Beijing Institute of Biological Products, who are doing clinical trials in phases 1 and 2. “Given the fact that COVID-19 is a totally new type of virus, various stakeholders’ participation, such as the National Immunization Technical Advisory Groups, the WHO, and UNICEF, is needed to work together to benefit the entire world,” he pointed out. Professor Edward Yoonjae Choi from the Graduate School of AI at KAIST shared how AI and data sciences are being utilized to interpret the major trends of the epidemic. His group mainly focuses on deep learning to model electronic health records (EHR) for disease predictions. Professor Choi said AI and machine learning would be crucial solutions and collaborative research projects will surely accelerate how quickly we can overcome the pandemic. In addition, Dr. Kijung Shin’s group is interpreting the SIR (Susceptible, Infected, and Recovered) model in Korea to predict the number of infections and when people were infected. However, researchers noticed that they could not see the typical modeling in Korea for predicting the number of infections since the model disregarded the new variable of humans’ efforts to stop the spread the virus. According to research by Professor Steven Whang’s group on social distancing and face mask distribution among vulnerable age groups, people in their 20s, 60s, and 70s followed the social distancing guidelines the most strictly. The research team analyzed the data provided by SK Telecom in the Gangnam district of Seoul. The data provided on people in their 70s, a group that accounted for half of all fatalities, showed that masks were generally well distributed nationwide. Dr. Alexandros Papaspyrids, Tertiary Education Industry Director of the Asia region of Microsoft, said that despite all the disadvantages and problems related to remote education, we shouldn’t expect to return to the days before the COVID-19 any time soon. “We should accept the new normal and explore new opportunities in the new educational environment,” he said. Hongtaek Yong, Deputy Minister at the Office of R&D Policy at the Ministry of Science and ICT presented the Korean government’s disease prevention and response policy and how they tried to mitigate the economic and social impact. He stressed the government’s fast testing, tracing, and openness for successfully flattening the curve, adding that the government used an ICT-based approach in all aspects of their response. From early this year when the first patient was reported, the government aggressively encouraged the biotech industry to develop diagnostic kits and novel therapeutic medications. As a result, five companies were able to produce genetic diagnostic reagents through the emergency approval. More notably, four of them are conducting massive R&D projects sponsored by the government and this is the result of the government’s continuous investment in R&D. Korea is the leader in R&D investment among the OECD countries. According to Yong, the government’s big data project that was launched in 2017 continuously traces the trends of epidemics in Korea. The epidemiological studies based on the paths taken by suspected patients using credit card transaction made the difference in predicting the spread of the coronavirus and implementing countermeasures. The data has been provided to the Korea’s Center for Disease Control (CDC). “In addition to the epidemics, we have so many other pending issues arising from digital and social equities, un-contact services, and job security. We are very open to collaborate and cooperate with other countries to deal with this global crisis,” Yong said. During the subsequent panel discussions, David Dollar, a senior fellow at the Brookings Institution, said, “The global economy in the coronavirus era will not have a rapid V-shaped recovery, but rather will fall into a long depression for at least two years.” He pointed out that if countries practice protectionism like they did during the Great Depression, the recession will be even worse. Hence, he urged the international community, especially developed nations, to avoid protectionism, consider the economic difficulties of developing countries, and provide them with financial support. Co-Director of the Center for Universal Education at the Brookings Institution Rebecca Winthrop raised concerns over the recent shift to online teaching and learning, claiming that insufficient infrastructures in low-income families in developing nations are already causing added educational disparities and provoking the inequity issue around the world. “The ways to provide quality education equally through faster and more effective means should be studied,” she said. Professor Joungho Kim, the director of the KAIST GSI and the forum’s organizer, concluded the event by saying that this forum will be a valuable resource for everyone who is providing assistance to those in need, both during and after the COVID-19 pandemic. (END)
2020.04.22
View 18292
14-Day Drawing Challenge Helps Maintain a Sense of Connection Amid Prolonged Social Distancing
- “You need space, but you also need connections.” - Schools and workplaces have closed and people are staying at home around the globe. Governments across the world have urged their people to keep a distance from others as a measure to slow the spread of the pandemic. With the Korean government’s decision to extend the intensive social distancing campaign until at least April 19, people in Korea are advised to avoid nonessential trips, public facilities, and social gatherings for another two weeks or so. This unprecedented prolonged social distancing drive leads people to feel fatigue and frustration. Such emotional stress is worse for those who live alone in a foreign country. The International Scholar and Student Services (ISSS) Team at KAIST has been working around the clock to build a dedicated COVID-19 Mental Health Support Service to support the university’s international community on campus and abroad and help get them connected online. As the COVID-19 situation lingers, there has been a growing demand for mental health support from many KAIST international members including 299 students who have been staying in Korea on their own and away from their families, as well as from those who could not return to campus from their overseas homes. In response to this, the KAIST ISSS Team has been offering some special online events and programs that can help the KAIST international community stay feeling connected whereever they are, while still keeping a safe distance from each other. For instance, the team is running an art-therapy program called ‘The 14-day Drawing Challenge’ March 30 through April 12. This program is online and individual-based, so it does not require any physical contact between participants. Each participant is asked to draw a picture at home using the daily topics previously set by the ISSS Team over 14 days. The topics include (Day 1) self-portrait, (Day 2) spring flowers, (Day 3) if you could become anything…, (Day 4) funniest memory you have, (Day 5) animals at KAIST, (Day 6) something you love, (Day 7) country or city you want to visit, (Day 8) what’s for dinner? (Day 9) person you miss, (Day 10) your favorite place at KAIST, (Day 11) your feeling today, (Day 12) things in your favorite color, (Day 13) song lyrics, and (Day 14) your future self in 10 years. Once all 14 pieces have been completed, submissions can be made online by sending an e-mail to the ISSS Team after scanning or taking a photo of each drawing. Selected submissions will be awarded small prizes for participation and shared through the university’s official website and SNS channels. “All the participants need is paper, coloring tools, and their creativity and imagination. They don’t have to be a great artist to join this challenge. There is no right or wrong or good or bad. They just need to have fun drawing every day for two weeks, ease their coronavirus anxiety, and remain emotionally stable just like they did back in the normal days,” said Su-yeon Ahn, the manager of the KAIST ISSS Team. She added, “In times like these, you need space, but you also need connections. Our team wants our international students, professors, and researchers to build strong connections with each other, even online.” Katherine Michelle Pena Santana, an M.S. candidate from the Department of Industrial and Systems Engineering who is taking part in ‘The 14-day Drawing Challenge,’ looked back and said, “Lately with the new coronavirus spreading around Korea and the entire world, I was feeling very anxious. I didn't get out of my room and lived by just looking at the same walls and creating some kind of a psychological burden on myself.” Santana added that these kinds of activities could give many foreign members of KAIST an opportunity to not only relieve fear and stress, but also share each other’s experiences dealing with this pandemic. She explained that this is why she decided to participate in this challenge. An undergraduate student from the Department of Physics, Ada Carpenter, appreciated the KAIST ISSS Team’s efforts to provide a variety of special online mental health support services to help the university’s international community socialize, while strictly following the government’s guidelines for social distancing. She expressed excitement about participating and said, “I’m so looking forward to the challenge of things that I wouldn’t normally draw.” < Short Self-interview Video Clip Filmed by Ada Carpenter > The COVID-19 Mental Health Support Service by the KAIST ISSS Team will be continually updated with new information and enhanced with other tools and support over the coming weeks and months. Some of the upcoming events and programs include ‘The Online Guitar Lessons’, ‘The Growing Houseplants Challenge’, and ‘The Any Song Challenge*’. * The song titled “Any Song” by Korean rapper Zico has been gaining attention on social media thanks to many celebrities taking on the ‘Any Song Challenge’, performing a short dance to the chorus of the song and sharing it on social media. (END)
2020.04.08
View 8936
Former Minister of Science and Technology Woo Sik Kim Elected as New Chairman of Board of Trustees
Dr. Woo Sik Kim, former Minister of Science and Technology and Deputy Prime Minister, was elected as the new chairman of the KAIST Board of Trustees on March 26. Dr. Kim will succeed Chairman Jang-Mu Lee, whose three-year term expired last month. Dr. Kim is a chemical engineering professor who spent most of his academic career at Yonsei University from 1968. In 2000, he held the office of president of Yonsei University for four years before moving to the Presidential Office of President Roh Moo-Hyun as his chief of staff in 2004. After serving in the Blue House for two years, he served as the Minister of Science and Technology from 2006 to 2008. An emeritus fellow of the National Academy of Engineering of Korea (NAEK), Chairman Kim also taught at KAIST as an invited distinguished professor from 2008 to 2010. He is currently the chairman of the Creativity Engineering Institute (CEI). (END)
2020.04.06
View 9929
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 91