본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
bio
by recently order
by view order
Professor Lee Sang Yeop Nominated the Chairman of Emerging Technologies Global Agenda Council of the World Economic Forum
Professor Lee Sang Yeop, Dean of College Life Science & Bioengineering, was appointed as the chairman of the Emerging Technologies Global Agenda Council of the World Economic Forum. He will be in office till the 31st of August 2012, exactly 1 year from the date of his appointment. The World Economic Forum (WEF) is a ‘think tank’ consisting of world leaders in various fields like economics, politics, and policies and has created the ‘Global Agenda Council’ to solve the problems mankind faces in achieving environmentally sustainable growth and suggest a collective vision and strategy. The committee to be chaired by Professor Lee (Emerging Technologies Global Agenda Council) will discuss the direction in which the fields of biological engineering, nanotechnology, and IT (information technology) should develop and discuss the possible impact these fields will have on the society. Professor Lee commented that, “I am extremely happy to be appointed as the chair of the Emerging Technologies Global Agenda Council at the World Economic Forum which is a gathering of world class leaders” and that “it is a great opportunity to spread Korea’s success and lessons in the advancement of science and technology.” Professor Lee is the creator of the field of system metabolism engineering and is making great strides in manipulating the microorganism’s metabolic pathways on a systems scale to make changing chemicals derived from oil into eco-friendly and bio-based products.
2011.09.20
View 8979
Using Light to Deliver Drugs to the Brain
The cerebral blood vessels have a unique blood-brain barrier. Using this unique structure, Professor Choi Chul Hee (Department of Bio-Brain Engineering) developed a technique to deliver drugs safely to the brain using lasers to alter the diffusivity of the blood-brain barrier. The blood-brain barrier allows the entry of only those drugs related to metabolic functions which made the entry of other drugs difficult. Due to this property it was difficult to administer the drug to a patient and have it affect the patient. Therefore the question was is it possible to maintain the effectiveness of the drug and allow it to pass through the barrier? The conventional method was to actually alter the structure of the drug or drill of small hole in the head and administering the drug directly, but these methods proved to be high risk and expensive. Professor Choi’s team used an ultra-short frequency laser beam on the barrier for 1/1000th of a second on the barrier to temporarily inhibit its function thereby allowing the drug to enter the brain safely.
2011.06.20
View 8444
Biomimetic Carbon Nanotube Fiber Synthesis Technology Developed
The byssus of the mussel allows it to live in harsh conditions where it is constantly battered by crashing waves by allowing the mussel to latch onto the seaside rocks. This particular characteristic of the mussel is due to the unique structure and high adhesiveness of the mussel’s byssus. KAIST’s Professor Hong Soon Hyung (Department of Material Science and Engineering) and Professor Lee Hae Shin (Department of Chemistry) and the late Professor Park Tae Kwan (Department of Bio Engineering) were able to reproduce the mussel’s byssus using carbon nanotubes. The carbon nanotube, since its discovery in 1991, was regarded as the next generation material due to its electrical, thermal, and mechanical properties. However due to its short length of several nanometers, its industrial use was limited. The KAIST research team referred to the structure of the byssus of the mussel to solve this problem. The byssus is composed of collagen fibers and Mefp-1 protein which are in a cross-linking structure. The Mefp-1 protein has catecholamine that allows it to bind strongly with the collagen fiber. In the artificial structure, the carbon nanotube took on the role of the collagen fibers and the macromolecular adhesive took on the role of the catecholamine. The result was a fiber that was ultra-light and ultra-strong. The results of the experiment were published in the Advanced Materials magazine and is patent registered both domestically and internationally.
2011.06.20
View 11774
New Diagnosis System for Cardiovascular Disease Developed
Professor Park Hyun Kyu of the department of Biological-Chemical Engineering developed a new diagnosis system for diagnosing cardiovascular diseases using E.coli to test the homocysteine concentration in the blood. The research team used the genetic recombination process to produce two different biologically illuminant nutrition cultures and compared the growth rate of the homocysteine between the two cultures by comparing the degree of luminescence. The technology can allow the simultaneous analysis of blood samples en masse and is also economical and thus is being regarded as a major step forward in the field of homocysteine concentration analysis which is a rapidly growing field. The conventional method used high performance liquid chromatography which took a long time to complete and was costly to run. The advantage of the newly developed system is that it gets rid of costly steps as it only needs to grow E.coli and measure the luminescence of the naturally occurring illuminant. The research was published as the cover paper of the April edition of ‘Analytical Chemistry’.
2011.05.11
View 8143
Dong Ah Newspaper Publish '100 Koreans who will Represent Korea in 10 years'
The 2011 list of ‘100 Koreans who will Represent Korea in 10 years’ published by Dong Ah Newspaper includes people of varying ages, vocation, and gender. In terms of University Professors, five professors from each of KAIST and SNU (Seoul National University) were selected. Especially Professor Charles Ahn received the most votes due to his world class talent, potential, and dedication. Professor Kim Sang Wook of the Department of Materials Science and Engineering is the world leading expert in the field of ‘Atom Construction Nanotechnology’ which deals with using macromolecules, carbon nanotubes, and grapheme to form various structures. His work on ‘low cost, large area nano patterning technology’ is expected to overcome the limits of nano treatment processes and its application in semi-conductors or displays carries great promise. Professor Kim Eun Sung of the Department of Physics discovered a new quantum behavior, supersolidity, in a low temperature, solid Helium for the first time in the world and is the leading scientist that leads the mechanics behind such a phenomenon. Professor Kim is leading the field of supersolidity through his works on hidden phase in a low temperature solid Helium, the understanding the role of crystalline faults in the supersolidity phenomenon, and the destruction of the supersolid’s macromolecular phenomenon through spinning solids. Professor Charles Ahn of the Graduate School of Innovation and Technology Management has been working as the developer of the V3 series (an anti-computer virus Vaccine Program) since 1988. He established the ‘Charles Ahn Research Center’ in 1995 and his solid and practical management style won him rave reviews. Professor Ahn was appointed as the Professor of the Graduate School of Innovation and Technology Management and has been teaching entrepreneurial perspective and Technology Management. Professor Lee Sang Yeop of the Department of Biology and Chemical Engineering developed world’s most efficient production method of succinic acid, developed high efficiency, tailored, culture for the production of key amino acids, Valine and Threonine, developed the production culture off bio-buthanol which is superior to bio-ethanol, and is widely known as one of the leaders in the field of metabolic engineering. Professor Jeong Ha Woong of the Department of Physics is being regarded as world leader in the field of Complex System Network Sciences. He implemented Statistical Physics to Complex Systems and also used the concept of ‘Networks’ and published 80 papers, including 5 which were published in Nature Magazine.
2011.04.30
View 12487
Low Cost and Simple Gene Analysis Technology Developed
Professor Park Hyun Kyu of the Department of Biology and Chemical Engineering has developed a ‘real time CPR’ using Methylene Blue (nucleic acid bonding molecule with Electro-Chemical property). The current gene analysis being used in the field is the real time PCR (Polymerase Chain Reaction) which takes advantage of the luminescent property of the gene and therefore requires expensive machines and chemicals to run. By contrast, the electro-chemical method is easy to use and low cost and, most importantly, it allows the machine to become small and portable. Professor Park’s research team used the decrease in the electro-chemical signal when the Methylene Blue reacts with nucleic acid and applied this to PCR which allowed for the real time analysis of the nucleic acid amplification process. With the result of the experiment as the basis, the team was able to perform a trial with Chlamydia trachomatis, a pathogen that causes sexually transmitted disease. The result showed that the electro-chemical method showed the same performance level as the real time PCR, which proved that the technology can be applied to diagnosing various diseases and gene research.
2011.04.30
View 9068
Genetic Cause of ADHD (Attention Deficit Hyperactivity Disorder) Found
The cooperative research team consisting research teams under Professor Kim Eun Joon and Professor Kang Chang Won of the department of Biological Sciences discovered that ADHD arises from the deficiency of GIT1 protein in the brain’s neural synapses. ADHD (Attention Deficit Hyperactivity Disorder) is found in around 5% of children around the world and is a disorder where the child becomes unable to concentrate, show over the top responses, and display impulsive behavior. The research team found that the difference between children with ADHD and those without it is one base in the GIT1 gene. The difference of a single base causes the underproduction of this protein, and those children with low levels of the protein had a higher probability to develop ADHD. In addition, further evidence was provided when the research team conducted mice experiments. Those mice with low levels of GIT1 exhibited impulsive and exaggerated reactions like humans with ADHD, had learning disabilities, and produced abnormal brain waves. And upon injecting these mice with cure for ADHD, the symptoms of ADHD disappeared. The impulsive behavior of ADHD children disappears as the child enters adulthood and a similar pattern was found in mice. A mice with low levels of GIT1 showed impulsive behaviors when 2 months old, but these behaviors disappeared as it got older to around 7 months old (equivalent to 20~30 years old for humans). Professor Kim Eun Joon commented that there has to be equilibrium between mechanisms that excite the neurons and mechanisms that calm the neurons, but the lack of GIT1 leads to the decrease in the mechanisms that calm the neurons which causes the impulsive behavior of ADHD patients. In addition, Professor Kang Chang Won commented that the results of the experiment has been receiving rave reviews and is being seen as the new method in the production of the cure for ADHD. The result of the experiment was published in the online edition of Nature Medicine magazine.
2011.04.30
View 9967
New Bio-Clock gene and its function found
The Ministry of Education, Science and Technology announced that a Korean research team has found a new gene responsible for maintaining the bio-clock (twenty-four) and its mechanism. Twnety-four was led by Professor Choi Joon Ho and Dr. Lee Jong Bin of KAIST (department of Biology) and was a joint operation with Professor Ravi Allada and Dr.Lim Jeong Hoon of Northwestern University (department of neurobiology) and the result was published in ‘Nature’ magazine. The research team experimented with transformed small fruit flies for 4 years and found that there was an undiscovered gene that deals with the bio rhythm in the brain which they named ‘twenty-four’. The understanding with genes prior to twenty-four was that these genes regulate biorhythm in the transcription phase (DNA to mRNA). Twenty-four operates in the step after transcription when the ribosome creates proteins. Especially twenty-four has a great effect on the ‘period protein’ which acts as a sub-atomic clock that regulates the rhythm and life of each cell. The experiment was innovational in that it was able to scientifically prove the function of the protein produced by the gene. The result is expected to help solve the problems associated with sleep disorders, jetlags, eating rhythms, bio rhythms, etc. The name twenty-four was the fact that a day, a cycle, is 24 hours long and the gene’s serial numbers CG4857 adds up to twenty four.
2011.02.23
View 10908
College of Cultural Science selects 'Best English Paper' Recipients
KAIST’s College of Cultural Science (Dean Kim Dong Won) announced the winners of ‘2010 Fall Semester Best English Paper Award’: Excellence Award went to Kwak Ah Young (department of Biology), Seong Du Hyun (undeclared major), Ahn Da In (Biological Chemical Engineering), and nine other students received the Participation Award. Ahn Da In discussed ‘Joyce and Chopin on use of epiphany’, Seong Du Hyun discussed ‘On Kant’s Groundwork for the metaphysics of Morals, its Achievements, and Implications’, and Kwak Ah Young discussed ‘Fact Pattern of Environmental Law’. The ‘Best English Paper’ Award has been awarded to undergraduates since 2009 Fall semester in the Humanities and Social Science Department’s efforts to increase creativity and English writing skills of students attending KAIST. For the 2010 fall semester, each professor in charge went through 1 to 2 papers (among 610 papers admitted across human science subjects) and recommended 29 papers to be discussed with great scrutiny. The evaluation took place throughout January and the 3 papers discussing English Literature, Scientific Philosophy, and Environmental Law were awarded the Excellence Award, and 9 other papers were awarded the Participation Award. Dean of Cultural Science College Kim Dong Won commented, ‘I am very encouraged by the level of papers and is becoming a very large art of the College of Cultural Science’. The chairman of the screening committee, Professor Kim Eun Kyung also commented, ‘the best paper award is helping students better their English levels’ and that ‘in order to form and encourage a sound and structured English paper writing environment, a anti-plagiarism program will be implemented amongst implementing other judging standards’.
2011.02.21
View 10227
The 40th Anniversary of the Establishment of KAIST Commemoration Held
KAIST, aspiring to become the best Science and Technology University, has turned 40. KAIST held the commemoration ceremony for the 40th Anniversary of the Establishment of KAIST in the auditorium. Five awards (Scholar, Creative Lecture, Excellence in Lecture, International Cooperation, Experiment) were given to Professors Kim Eun Jun and Walton Jones (department of Biology), Professor Abigail Shin (department of Humanities and Social Sciences), Professor Shin Seong Chul (department of Physics), and Professor Lee Sang Yeop (department of Biological Chemical Engineering). Each recipient received a prize of five million won. Professor Song Joon Hwa (department of Computer Sciences) received the ‘New Knowledge Award’ in recognition of his development of the Orchestrator Mobile platform. The new platform is different from Android or the IOS platform in that it allows a fluid relationship to be formed between the smartphone and the user. KAIST also showed off its new emblem. The emblem consists of a star which represents the KAIST’s goals of becoming the world leader, of training leaders, the center point, and hope. The main keywords are: ‘Leadership’, ‘Premium’, ‘Scientific’, and ‘Humanity’. KAIST plans on having various events from May 9th when there will be the Vision Declaration.
2011.02.21
View 12840
Success in differentiating Functional Vascular Progenitor Cells (VPC)
KAIST’s Professor Han Yong Man successfully differentiated vascular progenitor cells from human embryonic stem cells and reversed differentiated stem cells. The research went beyond the current method of synthesis of embryonic body or mice cell ball culture and used the careful alteration of signal transmission system of the human embryonic stem cells to differentiate the formation of vascular progenitor cells. The team controlled the MEK/ERK and BMP signal transmission system that serves an important role in the self replication of human embryonic stem cells and successfully differentiated 20% of the cells experimented on to vascular progenitor cells. The vascular progenitor cells produced with such a method successfully differentiated into cells forming the endodermis of the blood vessel, vascular smooth muscle cells and hematopoietic cells in an environment outside of the human body and also successfully differentiated into blood vessels in nude mice. In addition, the vascular progenitor cell derived from human embryonic cells successfully formed blood vessels or secreted vascular growth factors and increased the blood flow and the necrosis of blood vessels when injected into an animal with limb ischemic illness. The research was funded by the Ministry of Education, Science and Technology, 21st Century Frontier Research and Development Institution’s Cell Application Research Department and Professor Ko Kyu Young (KAIST), Professor Choi Chul Hee (KAIST), Professor Jeong Hyung Min (Cha Medical School) and Doctor Jo Lee Sook (Researcher in Korea Bio Engineering Institute) participated in it. The results of the research was published as the cover paper of the September edition of “Blood (IF:10.55)”, the American Blood Journal and has been patented domestically and has finished registration of foreign PCT. The results of the experiment opened the possibility of providing a patient specific cure using stem cells in the field of blood vessel illness.
2011.01.18
View 12357
Explanation for the polymerized nucleic acid enzyme's abnormal activation found
KAIST’s Professor Park Hyun Kyu of the Department of Bio Chemical Engineering revealed on the 23rd of December 2010 that his team had successfully developed the technology that uses the metal ions to control the abnormal activation of nucleic acids’ enzymes and using this, created a logic gate, which is a core technology in the field of future bio electrons. The polymerized nucleic acid enzyme works to increase the synthesis of DNA and kicks into action only when the target DNA and primers form complimentary pairs (A and T, C and G). Professor Park broke the common conception and found that it is possible for none complimentary pairs like T-T and C-C to initiate the activation of the enzyme and thus increase the nucleic acid production, given that there are certain metal ions present. What Professor Park realized is that the enzymes mistake the uncomplimentary T-T and C-C pairs (with stabilized structures due to the bonding with mercury and silver ions) as being complimentary base pairs. Professor Park described this phenomenon as the “illusionary polymerase activity.” The research team developed a logic gate based on the “illusionary polymerase activity’ phenomenon.” The logic gate paves the way to the development of future bio electron needed for bio computers and high performance memories. Professor Park commented, “The research is an advancement of the previous research carried on about metal ions and nucleic acid synthesis. Our research is the first attempt at merging the concepts of the two previously separately carried out researches and can be adapted for testing presence of metal ions and development of a new single nucleotide polymorphic gene analysis technology.” Professor Park added that, “Our research is a great stride in the field of nano scale electron element research as the results made possible the formation of accurate logic gates through relatively cost efficient and simple system designs.” On a side note, the research was funded by Korea Research Foundation (Chairman: Park Chan Mo) and was selected as the cover paper for the December issue of ‘Angewandte Chemie International Edition’.
2011.01.18
View 9949
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 20