본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
by recently order
by view order
Synthesis of a New Organic Supermolecule Succeeded
From left to right: Prof.Stoddart, Prof.Goddard and Prof.Jang Wook Choi KAIST EEWS graduate school’s research team led by Prof. Stoddart, Prof. Goddard and Prof. Jang Wook Choi has succeeded the synthesis of a new organic supermolecule that is stable in a radical condition under room temperature. Prof. Stoddart, who mainly led this research, is the world’s great scholar on orgaic molecular structure especially on catenane with an interconnection of several ring structures. Catenane is originated from Latin “catenane” referring to “chain”. The brief structure of the synthesized catenane is as following: Usually radicals are known to be unstable since they are electronically neutral and have very high reactivity. However, the radicals from this research showed air- and water- stability. It also showed a reversible change in oxidation number from o to +8 through chemical/electrochemical oxidation-reduction reaction. The phenomenon where paramagnetic and diamagnetic characteristics change according to the oxidation number has also been observed. Thus, the research like this - on the molecules showing various characteristics with stable radical - is expected to give a new direction to the next-generation electromemory system, semiconductor and energy storage system research. Meanwhile, this research, led by Prof.Stoddart team with Prof.Goddard and Prof. Jang Wook Choi’s team, is conducted under the support of Science and Technology’s World Class University project by Ministry of Education and published in ‘Science’ on 25th of Jan.
2013.02.24
View 9973
A Substance with Amazingly Improved Efficiency of Capturing Carbon Dioxides Developed
From left to right: Prof.Ali Coskun, Prof. Cafer T. Yavuz and Prof. Yousung Jung - Selectivity of CO2 increased by 300 times in comparison to nitrogen, published in Nature Communications- KAIST EEWS graduate school’s joint research team led by Prof. Cafer T. Yavuz, Prof. Ali Coskun, and Prof. Yousung Jung has developed the world"s most efficient CO2 absorbent that has 300 times higher carbon dioxide selectivity in comparison to nitrogen. Recently, the importance of CCS* technology, which is about capturing, storing and treating carbon dioxides, has begun to emerge world-widely as a practical alternative for the response to climate change. * CCS : Carbon Capture and sequestration Current carbon dioxide capturing technologies are wet capturing using liquid absorbent, dry capturing using solid absorbent and separation-membrane capturing using a thin membrane like a film. For the places like power plant and forge, where the emission of carbon dioxides is huge, the main task is to maintain the capturing efficiency under extremely hot and humid conditions. The previously studied dry absorbents, such as MOF or zeolite, had the disadvantages of instability in moist conditions and expensive cost for synthesis. On the other hand, the research team"s newly discovered dry absorbent, named ‘Azo-COP’, can be synthesized without any expensive catalysts so the production cost is very low. It is also stable under hot and humid conditions. COP is a structure consisting of simple organic molecules combined into porous polymer and is the first dry carbon dioxide capturing material developed by this research team. The research team introduced an additional functional group called "Azo" to the substance, so that it can selectively capture carbon dioxides among the mixture of gas. Azo-COP, which includes ‘Azo’ functional group, is manufactured easily by using common synthesis methods, and impurities are removed simply by using cheap solvents like water and acetone instead of expensive catalysts. As a result, the manufacturing cost has lowered drastically. Especially, Azo-COP is combined with carbon dioxides by weak attraction force rather than chemical attraction so the recycling energy cost for the absorbent can be reduced innovatively, and it is expected to be used for capturing substances other than carbon dioxides in various areas as it is stable under extreme conditions even under 350 degrees Celsius. This research is supported by Korea Carbon Capture&Sequestration R&D Center(Head: Sangdo Park) and KAIST EEWS planning group. Prof. Cafer T. Yavuz and Prof. Ali Coskun said that “when Azo-COP is used for separation of CO2 and N2, the capturing efficiency has increased by hundred times.” He continued “This substance does not need any catalysts and has great chemical characteristics like water stability and structure stability so is expected to be used in various fields including carbon dioxides capturing” Meanwhile, this research is published in ‘Nature’s stablemate ‘Nature Communications’ on 15th of Jan.
2013.02.24
View 11494
Online Article on President Sung-Mo 'Steve' Kang by California Council on Science and Technology (CCST)
The California Council on Science and Technology (CCST), an independent, not-for-profit organization established by the mandate of California Legislature in 1988, is designed to offer expert advice to the California state government and recommend solutions to science and technology-related policy issues. Over the past three years, President Sung-Mo “Steve” Kang has served as a member of CCST Council, an assembly of corporate CEOs, academicians, scientists, and scholars of the highest distinction. On February 21, 2013, CCST posted on its website the announcement of Council Member Sung-Mo “Steve” Kang as President of KAIST along with his personal comments on his move to KAIST and its presidency. For the online article, please visit: http://www.ccst.us/news/2013/0221KAIST.php
2013.02.23
View 7593
Prof. Jong Chul Ye Appointed as the Editor of IEEE TIP
Professor Jong Chul Ye KAIST Bio & brain engineering department’s Professor Jong Chul Ye has been appointed as the editor of the "IEEE image processing transactions (IEEE TIP, IEEE Transaction on Image Processing)’, a prominent journal in the sector of imaging and medical image processing. Professor Ye will act as the editor in the field of medical imaging from February 2013 to January 2016, during which he will participate in examining thesis, establishing the direction of the journal and more. Professor Jong Chul Ye was recognized for his notable work in the field of medical imaging research using compressed sensing for the development of a high resolution medical image reconstruction techniques. This technique has pioneered a new area that is applicable in magnetic resonance imaging (MRI), computed tomography (CT), positron emission Camcorder (PET) and brain imaging. On the other hand, “IEEE TIP” was first published in 1992 and is currently the world’s leading authority in the field of image processing, medical imaging, image acquisition, compression and output.
2013.02.21
View 9453
New BioFactory Technique Developed using sRNAs
Professor Sang Yup Lee - published on the online edition of Nature Biotechnology. “Expected as a new strategy for the bio industry that may replace the chemical industry.”- KAIST Chemical & Biomolecular engineering department’s Professor Sang Yup Lee and his team has developed a new technology that utilizes the synthetic small regulatory RNAs (sRNAs) to implement the BioFactory in a larger scale with more effectiveness. * BioFactory: Microbial-based production system which creates the desired compound in mass by manipulating the genes of the cell. In order to solve the problems of modern society, such as environmental pollution caused by the exhaustion of fossil fuels and usage of petrochemical products, an eco-friendly and sustainable bio industry is on the rise. BioFactory development technology has especially attracted the attention world-wide, with its ability to produce bio-energy, pharmaceuticals, eco-friendly materials and more. For the development of an excellent BioFactory, selection for the gene that produces the desired compounds must be accompanied by finding the microorganism with high production efficiency; however, the previous research method had a complicated and time-consuming problem of having to manipulate the genes of the microorganism one by one. Professor Sang Yup Lee’s research team, including Dr. Dokyun Na and Dr. Seung Min Yoo, has produced the synthetic sRNAs and utilized it to overcome the technical limitations mentioned above. In particular, unlike the existing method, this technology using synthetic sRNAs exhibits no strain specificity which can dramatically shorten the experiment that used to take months to just a few days. The research team applied the synthetic small regulatory RNA technology to the production of the tyrosine*, which is used as the precursor of the medicinal compound, and cadaverine**, widely utilized in a variety of petrochemical products, and has succeeded developing BioFactory with the world’s highest yield rate (21.9g /L, 12.6g / L each). *tyrosine: amino acid known to control stress and improve concentration **cadaverine: base material used in many petrochemical products, such as polyurethane Professor Sang Yup Lee highlighted the significance of this research: “it is expected the synthetic small regulatory RNA technology will stimulate the BioFactory development and also serve as a catalyst which can make the chemical industry, currently represented by its petroleum energy, transform into bio industry.” The study was carried out with the support of Global Frontier Project (Intelligent Bio-Systems Design and Synthesis Research Unit (Chief Seon Chang Kim)) and the findings have been published on January 20th in the online edition of the worldwide journal Nature Biotechnology.
2013.02.21
View 9954
KAIST welcomes Dr. Sung-Mo
The KAIST Board of Trustees appointed Distinguished Chair Professor Sung-Mo "Steve" Kang of Electrical Engineering at the University of California, Santa Cruz, as the 15th President of KAIST on January 31, 2013. President Kang has begun the duties of his office on February 23, 2013. An acclaimed scientist, professor, and entrepreneur in the field of integrated-circuit design, Dr. Sung-Mo "Steve" Kang has earned a worldwide reputation for his outstanding research achievements. He led the development of the world’s first full 32-bit CMOS microprocessor chips and their peripheral chips, as well as designed satellite-based private communication networks while working at AT&T Bell Laboratories as a technical supervisor of high-end microprocessor design group (1977-1985). Dr. Sung-Mo "Steve" Kang served as Chancellor of the University of California, Merced, from 2007 to 2011. During his tenure, he has increased student enrollment, improved the national and international visibility of the university, secured financial resources, expanded faculty and staff, and enhanced campus infrastructure. Before joining UC Merced, Dr. Kang was Dean of Baskin School of Engineering and Professor of Electrical Engineering during 2001-2007 at UC Santa Cruz where he had initiated several interdisciplinary programs in such areas as biomolecular engineering, information systems and technology management, biomimetic microelectronic systems, quantitative biomedical research, and bioinformatics. He also served as President of Silicon Valley Engineering Council, the alliance for engineering leaders in Silicon Valley (2002-2003). Dr. Sung-Mo "Steve" Kang was Head of the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign from 1995 to 2000. He is a fellow of the Institute of Electrical and Electronics Engineers (IEEE), the Association for Computing Machinery (ACM), and the American Association for the Advancement of Science (AAAS), and the president of the IEEE Circuits and Systems Society. Dr. Kang was the founding editor-in-chief of the IEEE Transactions on Very Large Scale Systems (1992-1994). Dr. Sung-Mo "Steve" Kang holds 15 U.S. patents and has written or co-authored nine books and more than 350 technical papers, and won numerous awards, among others, the Silicon Valley Engineering Hall of Fame (2009), ISQED Quality Award by the International Society for Quality Electronic Design (2008), Chang-Lin Tien Education Leadership Award (2007), IEEE Mac Van Valkenburg Award (2005), and Alexander von Humboldt Award for Senior US Scientists (1997). As an entrepreneur, he co-founded a fabless mobile memory chip design company, ZTI, which is currently located in San Jose, the US. Dr. Kang earned his doctorate from the University of California, Berkeley; a Master of Science degree from the State University of New York at Buffalo, and a Bachelor of Science degree, graduating summa cum laude, from Fairleigh Dickinson University in Teaneck, NJ. All his academic degrees are in electrical engineering.
2013.02.19
View 11149
Professor Shin In Shik First in Asia to receive Excellent Dissertation Award from IEEE RTSS
The research team lead by Professor Shin In Shik (Department of Computer Science) received the Excellent Dissertation Awardy in the IEEE RTSS out of 157 dissertations. It is the first time a Professor under an institute in the Asia region received the Award in the RTSS field during its 33 year history. Professor Shin had already received an Excellent Dissertation Award as a Ph.D. candidate at the University of Pennsylvania. Thus Professor Shin became the first and only scientist to receive the Award twice. Professor Shin has successfully defined the scheduling method of the multicore processor which was regarded as the problem in the field of RTSS for the past decade. Professor Shin has suggested new criteria for sorting real time tasks in parallel thereby suggesting a new scheduling method that surpasses current scheduling methods. The results are anticipated to provide new perspectives in the field of RTSS using multicore processors.
2013.01.22
View 7778
KAIST OLEV (On-Line Electric Vehicle) to begin operation!
An On-Line Electric Vehicle (OLEV) that can charge during travel will be put into service for the first time in the world on normal roads. From July of this year 2 OLEV buses will undergo trial operations in the city of Gumi. The trial route spans 24km from Gumi station and the region of In-Dong and the establishment of the route is expected to be of a 4.8billion Won scale. The start of the infrastructure construction will start on February and operation will start in July. KAIST had held sessions in October of last year to local governments and had a follow up OLEV suitability evaluation to those local governments expressing interest. The city of Gumi was elected due to its good electrical infrastructure and an administrative willingness to match. The OLEV developed by KAIST is an environmentally friendly vehicle that allows the transfer of electrical power using magnetic fields imbedded in the roads. Ordinary electric vehicles require frequent visits to replenish their power which gives the OLEV a comparative advantage as it can charge while on the road. The ability to charge whilst on the road means that the OLEV requires a smaller battery than the ordinary electrical vehicle resulting in lower prices and weight. The OLEV development commenced at KAIST in 2009 and in 2010 most of the core technologies required to realize the OLEV was developed and verified. Finally in 2012 steps were taken that will allow the commercialization of the OLEV. And in October of last year KAIST OLEV accomplished 75% power transfer efficiency that allowed a system that can be commercialized. The KAIST OLEV was named top 50 inventions in 2010 by Time Magazine.
2013.01.22
View 10364
Professor Lee Jeong Yong Receives 2012 'KAISTian of the Year' Award
Professor Lee Jeong Yong (Department of Material Science and Engineering) received the 2012 ‘KAISTian of the Year’ Award. Professor Lee had successfully developed a technique that allowed the observation and analysis of liquid in atomic scale. The technique is expected to have great impact on nano-material synthesis in solution, explaining electrode and electrolyte reaction, liquid and catalysis reaction research, and etc. and was therefore named as the best experimental accomplishment in KAIST in 2012. Professor Lee and his team’s finding has been published in the April edition of Science magazine and has had attracted the attention of the world. In addition, BBC News, and Science & Environment reported on the findings as their respective top articles. The optical microscope is incapable of atomic scale observation and the electron microscopes are capable but because of the vacuum state all liquids undergo evaporation making it impossible to observe liquids in an atomic scale. Professor Lee’s team wrapped the liquid with a layer of grapheme to prevent evaporation and successfully observed real time the platinum growth process in solution. Professor Lee’s findings were introduced as an example of exemplar research case in the Presidential address for ‘Science Day’ in April.
2013.01.22
View 8474
KAIST Alumni Association Selects 'Proud Alums'
KAIST Alumni Association selected ‘Proud Alums’ who have contributed to the development of Korea and society and brought honor to KAIST. The Alums selected were: CEO of Hyundai Heavy Industry Lee Jae Seong, Vice President of SK Hynix Park Sang Hoon, President of Samsung Display Kim Ki Nam, Director of Korea Research Institute of Standards and Science Kang Dae Lim, and President of Dawonsys Park Sun Soon. Lee Jae Song (Department of Industrial and Systems Engineering, M.S. 3rd) has led Hyundai Heavy Industries through innovation and had contributed in the development of Korea and oversaw the growth of Hyundai Heavy Industries to number 1 in Shipbuilding. Park Sang Hoon (Biological and Chemical Engineering, M.S. 5th) has led SK Hynix in the fields of energy, chemical and biological medicine and oversaw the development of world class R&D and production technologies to aid the development of Korea. Kim Ki Nam (Electrical and Electronic Engineering, M.S. 9th) has led the development of innovative semiconductor technologies thereby helping strengthening the competitiveness of Korean semiconductor industry. Kang Dae Lim (Mechanical Engineering, Ph.D. 1994 graduate) has helped in the development of Korean science and technology by leading the field of measurement standardization as Chairman of International Measurement Confederation and Chairman of Korea Association of Standards & Testing Organizations. Park Sun Soon (Electrical and Electronic Engineering, M.S. 12th) has succeeded in advancing the field of electronics by pioneering the field of creative technology.
2013.01.22
View 8845
Op-Ed by Prof. David Helfman: Global Science and Education in the 21st Century
Professor David Helfman from the Department of Biological Sciences and Graduate School of Nanoscience and Technology(https://sites.google.com/site/cellsignalinglaboratory/home) recently wrote an Op-Ed in the January 2013 issue of Journal of Happy Scientists and Engineers that ispublished by the Ministry of Science, Education and Technology, the Republic of Korea. In the article entitled “Global Science and Education in the 21st Century,” Professor Helfman addressed three important issues in science and education, which will have a great impact for the development of world-leading universities in Korea. For the article, please see the attachment.
2013.01.22
View 10911
Professor Hwang Kyu Young and Professor Yang Dong Yeol Receives Engineer of Korea Award
Emeritus Professor Hwang Kyu Young (Department of Computer Sciences) and Professor Yang Dong Yeol (Department of Mechanical Engineering) were named as the 2012 Engineer of Korea by the Ministry of Education, Science, and Technology and Korea Science Foundation. The Engineer of Korea Award is awarded biannually to scientists and engineers that have contributed to the development of Korea’s science and technology and national economy. Professor Hwang’s work with DBMS and close coupling architecture of information search and overall new theories and application technology development in the field of database system has aided the opening and expansion of IT software industry development and the advent of internet information culture era. Professor Yang is a word renowned scholar in the field of net shape manufacturing and is considered to have opened a new page in the field of nano-molding technique. In addition, Professor Eum Sang Il (Department of Mathematical Science) has been selected as the 2012 Young Scientist Award.
2013.01.22
View 10255
<<
첫번째페이지
<
이전 페이지
121
122
123
124
125
126
127
128
129
130
>
다음 페이지
>>
마지막 페이지 177