KAIST and Chungnam National University (CNU) built a pedestrian walkway ("pedway") that physically brings them closer than ever. Opened on April 13, 2015, the KAIST-CNU Pedway now offers members of the two universities a quick and scenic road to walk or bike for their campus visit.
The 180-meter-strip, with a width of four meters, starts from KAIST’s student dormitories, Narae and Mir Halls, and arrives at the backyard of the College of Agriculture and Life Sciences building at CNU. For security and safety precaution, emergency alarms, CCTVs and security lights are installed along the path.
A commemorative event celebrating the opening of the pedway was held on April 15, 2015 at the KAIST campus. Along with senior administrators of the two universities, In-Sik Kim, Chairman of Daejeon City Assembly, Choon-Hee Baek, Deputy Mayor for Political Affairs of Daejeon, President Steve Kang of KAIST, and President Sang-Chul Jung of CNU will attend the event.
CNU is located just a twenty-minute walk from KAIST, but the two universities have had little interaction. To promote more collaboration and exchange, KAIST and CNU signed a memorandum of understanding on the cooperation of education, research, and medicine in June 2014.
With the KAIST-CNU Pedway as the stepping stone, the two universities will strengthen their cooperation in academic information exchange allowing access to their libraries and establishing the Graduate School of Integrated Medical Science in Sejong.
President Kang said, “Universities should not be isolated islands from the local community, but should act as bridges between different districts.” He continued, “I hope this pedway can be the starting point.”
President Jung said, “I hope this road can remove the wall between KAIST and Chungnam National University, in terms of knowledge, information, and people. I further hope that it will become the symbol and token of unity of the two universities.”
- Professor Mooseok Jang's research team at the Department of Bio and Brain Engineering develops an ultra-compact, high-resolution spectrometer using 'double-layer disordered metasurfaces' that generate unique random patterns depending on light's color. - Unlike conventional dispersion-based spectrometers that were difficult to apply to portable devices, this new concept spectrometer technology achieves 1nm-level high resolution in a device smaller than 1cm, smaller than a fingernail. - It c
2025-06-13- KAIST-KRIBB Develops ‘FiNi-seq’ Technology to Capture Characteristics of Fibrotic Microenvironments Accumulated in Liver Tissue and Dynamic Changes of Early Aging Cells - Elucidation of the Spatial Ecosystem of Aged Liver Tissue, where Reprogramming of Senescent Cells and Immune Exhaustion Progresses, at the Single-Cell Genome and Epigenome Levels < (From left) Professor Jong-Eun Park of KAIST Graduate School of Medical Science and Engineering (GSMSE), Dr. Chuna Kim of K
2025-06-12What started as an idea under KAIST’s Global Singularity Research Project—"Can we build a quantum computer using magnets?"—has now become a scientific reality. A KAIST-led international research team has successfully demonstrated a core quantum computing technology using magnetic materials (ferromagnets) for the first time in the world. KAIST (represented by President Kwang-Hyung Lee) announced on the 6th of May that a team led by Professor Kab-Jin Kim from the Department of P
2025-06-12< Photo 1. (Front row, from left) Jeesoo Park (Ph.D. Candidate), Professor Hee-Tak Kim (Back row, from left) Kyunghwa Seok (Ph.D. Candidate), Dr. Gisu Doo, Euntaek Oh (Ph.D. Candidate) > Hydrogen is gaining attention as a clean energy source that emits no carbon. Among various methods, water electrolysis, which splits water into hydrogen and oxygen using electricity, is recognized as an eco-friendly hydrogen production method. Specifically, proton exchange membrane water electrolysis
2025-06-11· A team led by Professor Won Do Heo from the Department of Biological Sciences, KAIST, has developed a pioneering technology that selectively acetylates specific RNA molecules in living cells and tissues. · The platform uses RNA-targeting CRISPR tools in combination with RNA-modifying enzymes to chemically modify only the intended RNA. · The method opens new possibilities for gene therapy by enabling precise control of disease-related RNA without affecting the rest of the
2025-06-10