본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
National+Nanofab+center
by recently order
by view order
Nanowire Made of Diverse Materials May Become Marketable
- Technology to commercialize nanowire developed after 2 years of industrial-academic joint research - - 2 million strands of 50nm-width, 20 cm-length nanowire mass producible in 2 hours – A South Korean joint industrial-academic research team has developed the technology to put forward the commercialization of nanowire that is only a few nanometers wide. It is expected to be applied in various fields such as semiconductors, high performance sensors, and biodevices. In cooperation with LG Innotek and the National Nanofab center, Professor Jun-Bo Yoon, from KAIST Department of Electrical Engineering, developed the technology to mass produce nanowire at any length with various materials. The research results are published on the online edition of Nano Letters on July 30th. Nanowire has a long linear structure with its width at 100 nanometers at maximum. It is a multifunctional material that has yet undiscovered thermal, electric, and mechanical properties. Nanowire is highly acclaimed as a cutting-edge material with unique nano-level properties that can be applied in semiconductors, energy, biodevices, and optic devices. Previously, nanowires had an extremely low synthesis rate that required three or four days to grow few millimeters. It was therefore difficult to produce the desired products using nanowires. Moreover, nanowires needed to be evenly arranged for practical application, but the traditional technology required complex post-treatment, not to mention the arrangement was not immaculate. The research team applied semiconductor process instead of chemical synthesis to resolve these issues. The team first formed a pattern greater that of the target frequency by using a photo-engraving process on a silicon wafer board whose diameter was 20 centimeters, then repeatedly reduced the frequency to produce 100 nm ultrafine linear grid pattern. Based on this pattern, the research team applied the sputtering process to mass-produce nanowires in perfect shapes of 50 nm width and 20 cm maximum length. The new technology requires neither a lengthy synthesis process nor post-cleaning to attain a perfectly aligned state. Thus, academic and industrial circles consider the technology has high possibilities for commercialization. “The significance is in resolving the issues in traditional technology, such as low productivity, long manufacturing time, restrictions in material synthesis, and nanowire alignment,” commented Professor Yoon on this research. “Nanowires have not been widely applied in the industry, but this technology will bring forward the commercialization of high performance semiconductors, optic devices, and biodevices that make use of nanowires.”
2013.10.18
View 8605
National NanoFab Center Established
NNFC Emerges with Cutting-edge Nanotech On March 16, a dedication ceremony was held at KAIST to mark the completion of the National NanoFab Center(NNFC). The opening was graced with the presence of several prominent figures, namely, President Robert B. Laughlin, Daejeon City Mayor Hong-chul Yum, and Myung Oh, Deputy Prime Minister and Minister of Science and Technology.Celebrations of the opening were attended by roughly 300 related personnel. After a welcoming speech given by Hee-Chul Lee, President of NNFC, the event proceeded with a ribbon cutting ceremony, followed by a grand tour of the cleanroom. The newly completed NNFC on campus boasts a total area of 17,035 square meters which consists of a four-storey research building, a cleanroom and a central utility building. Still at the first stage of its equipment supplementation, the center has currently achieved an immense 140 in gear variety, worth approximately 80 billion won. At its final stage, a total of 206 equipment arrangements are to be available for various research purposes. Implementing the use of state-of-the-art facilities, NNFC’s devices include an electron beam capable of critical measurements as small as ten nanometers and an ion beam structure for the analysis of nano-scale materials. These equipments are to be used in numerous areas - fundamental physics, biotechnology and nanoscience Until the year 2011, a sum of 290 billion won is to be invested in the NNFC by the government and other private organizations. The center, along with Daedeok Techno Valley, aspires to play an integral role in maturing towards a new age of nanotechnology. President Lee of the NNFC stated that the center is essential for Korea’s nanotechnology skills to achieve higher standards and compete with countries such as the U.S. and Japan. President Lee is also a professor of KAIST at the Division of Electrical Engineering. By Kyoung-lee Park / Staff ReporterApril, 2005 / The KAIST Herald
2005.04.12
View 19715
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1