본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
AI+%ED%99%95%EC%82%B0%EB%AA%A8%EB%8D%B8
최신순
조회순
'추론 속도 · 성능 모두 잡은' AI 확산모델 신기술 개발
확산모델(diffusion model)은 많은 AI 응용에 활용되고 있으나, 효율적인 추론-시간 확장성(inference-time scalability)*에 대한 연구가 부족했다. 이에 연구진은 확산모델에서도 고성능 고효율 추론이 가능한 신기술을 개발했다. 이 기술은 기존 모델이 한번도 성공하지 못한 초대형 미로찾기 태스크에서 100%의 성공률을 기록하며 성능을 입증했다. 이번 성과는 향후 지능형 로봇, 실시간 생성 AI 등 실시간 의사결정이 요구되는 다양한 분야에서 핵심 기술로 활용될 수 있을 것으로 기대된다. *추론-시간 확장성(inference-time scalability): AI 모델이 추론 단계에서 사용할 수 있는 계산 자원의 양에 따라 성능을 유연하게 조절할 수 있는 능력을 의미한다. 우리 대학 전산학부 안성진 교수 연구팀이 딥러닝 분야 세계적 석학인 몬트리올 대학교 요슈아 벤지오(Yoshua Bengio) 교수와의 공동연구를 통해, 인공지능 확산 모델의 추론-시간 확장성을 크게 개선하는 신기술을 개발했다고 20일 밝혔다. 이번 연구는 KAIST-MILA(몬트리올 학습 알고리즘 연구소) 프리프론탈 AI 공동연구센터를 통한 협력의 일환으로 수행됐다. 이 기술은 인공지능의 학습 이후 추론 단계에서 더 많은 계산 자원을 효율적으로 활용함으로써, 단순히 데이터나 모델 크기를 키우는 것으로는 해결할 수 없는 고난도 문제를 풀 수 있도록 돕는 핵심 AI 기술로 주목받고 있다. 하지만 현재 다양한 응용 분야에서 활용되고 있는 확산 모델에서는 이러한 스케일링을 효과적으로 구현하는 방법론이 부족하다는 한계가 있었다. 이에 안 교수 연구팀은 벤지오 교수와 협력해, 몬테카를로 트리 탐색(Monte Carlo Tree Search) 기반 새로운 확산 모델 추론 기법을 제안했다. 이 방법은 확산 과정 중 다양한 생성 경로를 트리 구조로 탐색하며, 제한된 계산 자원으로도 높은 품질의 출력을 효율적으로 찾아낼 수 있도록 설계됐다. 이를 통해 기존 방법이 0%의 성공률을 보이던‘자이언트-스케일의 미로 찾기’태스크에서 100%의 성공률을 달성했다. 아울러 후속 연구에서는 제안한 방법론의 주요 단점인 느린 속도 문제를 대폭 개선하는 방법을 개발하는데 성공하였다. 트리 탐색을 효율적으로 병렬화하여 비용을 최적화해, 이전 방식 대비 최대 100배 빠른 속도로도 동등하거나 더 우수한 품질의 결과를 얻는 데 성공했다. 이는 제안한 방법론의 추론 능력과 실시간 적용 가능성을 동시에 확보했다는 점에서 큰 의미가 있다. 안성진 교수는 “이번 연구는 고비용 계산이 요구되던 기존 확산 모델의 한계를 근본적으로 극복한 기술”이라며 “지능형 로봇, 시뮬레이션 기반 의사결정, 실시간 생성 AI 등 다양한 분야에서 핵심 기술로 활용될 수 있을 것”이라고 밝혔다. 연구 결과는 전산학부 윤재식 박사과정이 제 1저자로 지난 7월 13일부터 19일까지 캐나다 벤쿠버에서 열린 제42회 국제기계학습학회(ICML 2025)에서 스포트라이트(Spotlight) 논문(전체 채택 논문 중 상위 2.6%)으로 발표됐다. ※ 논문제목: Monte Carlo Tree Diffusion for System 2 Planning (Jaesik Yoon, Hyeonseo Cho, Doojin Baek, Yoshua Bengio, Sungjin Ahn, ICML 25), Fast Monte Carlo Tree Diffusion: 100x Speedup via Parallel Sparse Planning (Jaesik Yoon, Hyeonseo Cho, Yoshua Bengio, Sungjin Ahn) ※ DOI: https://doi.org/10.48550/arXiv.2502.07202, https://doi.org/10.48550/arXiv.2506.09498 한편, 이번 연구는 한국연구재단의 지원을 받았다.
2025.07.21
조회수 960
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1