-
이산화탄소만 잡아내는 유망 소재를 AI로 쉽게 찾는다
기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다.
복잡한 구조와 분자 간 상호작용의 예측 한계로 인해 고성능 소재를 찾는 데 큰 제약을 극복하기 위해, 연구팀은 MOF와 이산화탄소(CO2), 물(H2O) 사이의 상호작용을 정밀하게 예측할 수 있는 기계학습(머신러닝) 기반 역장(Machine Learning Force Field, MLFF)을 개발하고, 이를 통해 양자역학 수준의 예측 정확도를 유지하면서도 기존보다 월등히 빠른 속도로 MOF 소재들의 흡착 물성을 계산할 수 있도록 했다.
연구팀은 개발된 시스템을 활용해 8,000여 개의 실험적으로 합성된 MOF 구조를 대규모 스크리닝한 결과, 100개 이상의 유망한 탄소 포집 후보 소재를 발굴했다. 특히 기존의 고전 역장 기반 시뮬레이션으로는 확인되지 않았던 새로운 후보 소재들을 제시했으며, MOF의 화학 구조와 흡착 성능 간의 상관관계를 분석해 DAC용 소재 설계에 유용한 7가지 핵심 화학적 특징도 함께 제안했다.
이번 연구는 MOF–CO2 및 MOF-H2O 간 상호작용을 정밀하게 예측함으로써, DAC 분야의 소재 설계 및 시뮬레이션 기술을 크게 향상한 사례로 평가된다.
우리 대학 생명화학공학과 임윤성 박사과정과 박현수 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `매터 (Matter)'에 지난 6월 12일 게재됐다.
※논문명: Accelerating CO2 direct air capture screening for metal-organic frameworks with a transferable machine learning force field
※DOI: 10.1016/j.matt.2025.102203
한편, 이번 연구는 Saudi Aramco-KAIST CO2 Management Center와 과학기술정보통신부의 글로벌 C.L.E.A.N. 사업의 지원을 받아 수행됐다.
2025.06.30
조회수 629
-
작은 날갯짓으로 완성된 10개월의 여정, KAIST 연못에 돌아온 특별한 가족
Instagram에서 이 게시물 보기
KAIST(@official_kaist)님의 공유 게시물
2025년 6월 9일 오전, KAIST 캠퍼스 연못가에는 이른 시간부터 조심스런 움직임이 이어졌다. 격리 보호소에서 한 달간 지내던 오리 가족과 새끼 거위 두 마리를 다시 연못에 방사하는 날이었다. 작은 이동장이 열리자, 어린 새끼들은 주변을 살피며 천천히 물가로 나섰고, 그 뒤를 따라 어미 오리가 발을 디뎠다.
지난해 여름 구조된 이 오리는 한때 무리에 섞이지 못한 외톨이였지만, 이제는 새끼 오리와 새끼 거위를 함께 품은 가족의 중심이 되어 돌아왔다. 방사 장면을 지켜본 학생과 교직원들은 10개월 동안 이어진 이들의 여정을 떠올리며 조용한 환영을 보냈다.
이야기의 시작은 2024년 7월로 거슬러 올라간다. KAIST 연못가에서 어미 없이 뒤뚱거리며 걷던 아기 오리 두 마리가 KAIST 학생의 제보로 발견됐다. 보송보송한 솜털과 납작한 주둥이, 사람을 겁내지 않는 태도로 보아 누군가가 유기한 것으로 추정됐다. ‘거위 아빠’로 잘 알려진 생명과학과 허원도 교수와 KAIST 시설팀은 즉시 구조에 나섰고, 두 마리는 약 한 달간의 보호를 거쳐 연못에 방사되었다.
처음에는 비교적 안정적으로 적응하는 듯 보였다. 그러나 기존의 거위 무리와 어울리지는 못했고, 독립적으로 생활했다. 얼마 지나지 않아 한 마리는 자취를 감췄고, 남은 한 마리는 겨울 연못가에서 부상을 입은 채 발견됐다. 생태계에 대한 인위적 개입을 최소화해 온 KAIST의 원칙에도 불구하고, 이번에는 생명을 살리기 위해 예외가 적용되었다. 허 교수와 시설팀의 보호 속에서 오리는 한 달 만에 건강을 되찾았다.
이듬해 봄, 회복한 오리는 산란을 시작했다. 허 교수는 특별한 개입 없이 먹이 조절을 통해 산란과 포란을 지원했다. 그리고 5월 5일 어린이날 아침, 오리가 품은 알들이 부화했다. 구조 당시에는 무리에 섞이지 못했던 외로운 오리가, 이제는 한 생명을 품은 어미가 되어 있었다. 그리고 열흘 뒤인 5월 15일, KAIST 연못에서는 또 다른 생명이 태어났다. 거위 무리에서 새끼 거위 네 마리가 부화한 것이다. 이렇게 많은 생명들의 탄생 속에서 오리 연못은 그 어느 때보다 활기 넘치는 모습을 보였다.
그런데 불과 며칠 후 어미는 보이지 않았고, 물에 뜨지 못하는 새끼 거위들이 연못가에서 떨고 있었다. 이 모습을 목격한 서울대 학생 변다현 씨의 제보로 다시 구조가 이뤄졌고, 목숨을 검진 새끼 거위 두 마리는 오리 가족과 함께 보호소에 머물게 되었다.
서로 다른 종의 동거는 처음엔 어색했지만, 서서히 변화를 보이기 시작했다. 오리 어미는 새끼 거위들을 밀어내지 않았고, 새끼 오리와 새끼 거위는 함께 먹이를 먹고 잠들며 새로운 가족으로 묶여갔다. 한 달간의 합사 이후, 이들은 함께 연못에 방사되었고, 기존 거위 무리는 새끼 거위와 오리 가족 모두를 받아들였다.
이 작은 가족이 연못으로 돌아오기까지 걸린 시간은 열 달. 유기에서 구조, 부상과 회복, 산란과 부화, 그리고 낙오된 새끼들을 함께 돌본 한 달의 동거에 이르기까지 서로 다른 사연을 지닌 생명들이 한 무리가 되어 연못으로 복귀하기까지의 여정은 단순한 성장 이상이었다. 오리 가족의 10개월은 작은 위기들과 선택의 순간들을 거치며 만들어진 기록이자, KAIST 캠퍼스의 작은 기적이다.
2025.06.10
조회수 1836
-
서로 닮았지만 다른 우리, 가족이 됐어요.
그 동안 어린이날 오리새끼 탄생과 스승의 날 거위 새끼 부화로 KAIST 오리 연못에는 따스한 행복이 감돌았다. 그러나 불과 며칠 후, 천적의 공격 탓인지 연못에 또 다시 위기가 닥쳤다.
추위에 떨고 있는 새끼 거위 두 마리가 발견된 것이다. 다행히 서울대학교에 재학 중인 한국생명공학연구원 인턴 변다현 학생의 발 빠른 구조 덕분에 새끼들은 무사히 구조되었다.
하지만 깃털에 기름을 발라 줄 어미가 없었던 탓에 새끼들은 스스로 물에 뜨거나 헤엄칠 수 없었다. 변다현 학생은 새끼들에게 어미의 보살핌이 필요하다고 판단해 거위 무리에 합류시키려 했으나, 성체 거위들은 헤엄을 치지 못하는 새끼 거위들을 외면하였다.
결국 학생은 임시보호를 이어가며 새끼들을 정성껏 돌봤고, 이후 KAIST 생명과학과 허원도 교수에게 새끼 거위를 인계했다. 현재는 허원도 교수와 KAIST 시설팀이 협력하여 새끼 거위가 성장할 때까지 격리장에서 보호하고 있다.
그렇게 격리장에 있던 오리 가족과 함께 지내게 된 거위들. 닮은 듯 닮지 않은 그들의 첫 만남은 어색하기 그지없었다. 그런데 다음 날, 뜻밖의 광경이 펼쳐졌다. 어미를 잃은 새끼 거위들과 한때 홀로 살아남은 오리가 어느새 다정함을 나누고 있던 것이다.
이들의 특별한 동거는 단지 귀엽고 따뜻한 장면 이상의 의미를 지닌다.
유기와 부상, 외면과 추위를 견뎌낸 작은 생명들이 만들어 낸 이 가족은 그 자체로 회복과 희망의 상징이기도 하다. 다름을 수용하고 함께 살아가는 그들의 모습에서 KAIST가 꿈꾸는 미래 공동체의 한 단면을 엿볼 수 있지 않을까.
2025.05.30
조회수 2423
-
화학과 이효철 교수, 제34회 삼양그룹 수당상 수상
우리 대학 화학과 이효철 교수가 제34회 삼양그룹 수당상 기초과학 부분 수상자로 선정됐다.
이효철 교수는 지난 20년간 분자 구조동역학 연구에 집중하며 화학 반응중 분자의 구조 변화를 실시간으로 관측하는데 큰 성과를 거두었다. 특히 다양한 분자의 구조동역학을 분석하기 위해 새로운 실험 기법과 분석법을 도입함으로써 기존 연구의 한계를 극복하고 학문 발전에 크게 기여했다.
이 교수는 분자들의 화학 반응 과정을 밝히기 위해 엑스선 회절 방식을 활용해 용액 속 분자의 빠른 구조 변화를 관측하는데 성공하여 2005년‘사이언스'에 발표하며 엑스선 구조동역학 분야를 개척했다.
이후 2015년에는 화학결합 형성 과정을, 2020년에는 화학반응 중 분자 내 모든원자들의 시간-공간적 궤적으로 측정한 연구를 '네이처'에 발표했다.
한편, 삼양그룹이 주관하는 수당상은 기초과학 및 응용과학 분야에서 탁월한 연구 업적을 이룬 연구자 2인을 선정해 상패와 상금 2억원을 수여한다.
시상식은 5월 20일 서울 롯데호텔에서 열릴 예정이다.
2025.05.07
조회수 1713
-
2025 어린이날, 오리가 엄마가 되었습니다
2024년 7월, KAIST 캠퍼스에 특별한 손님이 찾아왔다. 보송보송하게 난 노란 솜털, 뒤뚱거리는 걸음걸이, 납작한 주둥이, 영락없는 아기 오리였다. 그러나 어찌 된 일인지 어미는 보이지 않았다. 사람을 두려워하지 않고 잘 따르는 것으로 보아 누군가 유기한 오리가 분명했다.
다행히 아기 오리는 학생들이 곧장 제보한 덕분에 무사히 구출됐다.
새로 KAIST의 구성원이 된 오리들은 비교적 평화롭게 캠퍼스 생활에 적응하는 듯했다. 아무래도 새 식구인 만큼 캠퍼스에 터 잡고 살던 기존의 거위 무리에 섞이지는 못했지만, 그렇다고 거위들이 이들을 배척하지도 않았다. 데면데면하게 지내는 어색한 이웃 같은 사이라서 그런지, 오리들이 머잖아 기존의 거위 무리에 합류하리라는 기대도 있었다.
‘거위 아빠’로 잘 알려진 허원도 생명과학과 교수가 KAIST 시설팀과 함께 이들을 보호하는 데 나섰다. 허 교수는 KAIST의 상징이나 다름없는 학내 거위와 오리를 꾸준히 관찰하며 보호해 온 것으로 잘 알려졌다. 교직원과 허 교수의 보살핌 덕분에 구출된 지 약 한달 만에 두 오리는 무사히 캠퍼스에 방사될 수 있었다.
그러나 겨울이 지나면서 안타까운 소식이 전해졌다. 한 마리가 실종되고 남은 한 마리도 연못가에서 부상을 입은 채 발견된 것이다. 캠퍼스에 사는 동물들이 자연 상태를 유지할 수 있도록 개입을 최소화한다는 것이 시설팀과 허 교수의 방침이지만 우선 다친 오리를 살리는 것이 급선무였다. 한 달 동안 다시 격리되어 회복기간을 거친 오리는 무사히 회복되어 햇볕 아래에서 봄을 맞을 수 있었다.
오리들의 산란기인 봄이 시작되고 나서 허 교수는 조금만 더 도움을 주기로 했다. 산란할 조짐이 보여 ‘임산부를 위한 특식’을 3월 한 달 동안 꾸준히 제공한 것이다. KAIST 구성원의 보살핌과 관심 속에 어미 오리가 포란을 시작한 지 28일째인 5월 5일 어린이날 아침, 마침내 새 생명이 알을 깨고 나왔다. 음식 외에는 특별한 보호 없이 오롯이 살아남은 오리 혼자서 일구어 낸 소중한 결실이었다.
유기와 부상이라는 고난을 딛고 홀로 선 오리는 이제 새로운 가족을 이뤘다. 아직까지도 기존의 거위 무리와는 거리감이 있지만, KAIST의 거위들이 공격적이거나 배타적이지는 않은 만큼 자연스럽게 캠퍼스의 생태계에 자리잡을 수 있을 것으로 보인다. 이미 KAIST의 거위 무리는 다섯 마리의 새끼 오리를 보호하며 키워 낸 경험이 있다.
오리 한 마리가 어린이날 KAIST 캠퍼스에 선사한 특별한 봄. 새로운 가족이 탄생하기까지 그 작은 생명이 이뤄 낸 결실은 사람과 동물이 조화를 이루는 KAIST 캠퍼스의 상징이기도 하다. 구조부터 부화까지 꼭 필요한 도움만 제공한 KAIST 구성원들의 조심스러운 개입은 ‘동물과 사람의 바람직한 공존’이 무엇인지 다시 생각해보게 한다.
2025.05.07
조회수 2750
-
KAIST, 조선시대 ‘일월오봉도’ 색소없이 완벽 구현하다
일반적으로 색깔을 표현하기 위해서는 가시광선 내의 특정 파장의 빛을 흡수하는 화학 색소가 필요하다. 그런데 우리 연구진이 화학 색소를 사용하지 않아 친환경적이며, 변색이나 퇴색 없이 컬러 그래픽을 영구 보존할 수 있는 초정밀 컬러 그래픽으로 조선시대 ‘일월오봉도’를 구현하는데 성공했다.
우리 대학 생명화학공학과 김신현 교수 연구팀이 반구 형태의 미세구조를 이용해 화학 색소를 전혀 사용하지 않고 고해상도의 컬러 그래픽을 구현하는 기술을 개발했다고 26일 밝혔다.
영롱한 파란색을 띄는 몰포 나비나 피부색을 바꾸는 팬서 카멜레온은 화학 색소 없이도 발색하는데, 이는 물질을 이루는 규칙적인 나노구조가 빛의 간섭 현상을 통해 가시광선의 빛을 반사해 나타나는 구조색이다. 구조색은 물질이 아니라 구조에 따라 색깔이 달라지기 때문에 한가지 소재로도 다양한 색깔을 나타낼 수 있다.
그러나 구조색 발색을 위한 규칙적인 나노구조는 인공적으로 구현하기 위한 기술적 난이도가 높고, 다양한 색 표현이 어려울 뿐만 아니라 다양한 색을 정교하게 패턴으로 나타내기 매우 어렵다.
김신현 교수 연구팀은 규칙적인 나노구조 대신 부드러운 표면을 갖는 반구 형태의 미세구조만을 이용해 다양한 구조색을 높은 정밀도로 패턴화할 수 있는 새로운 기술을 개발했다.
뒤집어진 반구 형태의 미세 구조체에 빛이 입사할 때 측면으로 입사한 빛은 곡면을 따라 전반사돼 재귀반사가 일어나게 된다. 이때 반구의 직경이 10마이크로미터 내외(머리카락 굵기의 10분의 1 수준) 일때 재귀반사가 일어나는 서로 다른 경로의 빛이 가시광선 영역에서 간섭해 구조색이 나타난다.
구조색은 반구의 크기에 따라 조절 가능하며, 팔레트에서 물감을 섞듯 서로 다른 크기의 반구를 배열함으로써 발현 가능한 색을 무한히 늘릴 수 있다.
연구팀은 다양한 크기의 반구형 미세구조를 정밀하게 패턴화하기 위해 반도체 공정에 사용되는 양성 감광성 고분자*를 광식각법**을 통해 미세기둥 형태로 패턴화한 다음 온도를 올려 감광성 고분자의 리플로우***를 유도함으로써 반구형 미세구조를 형성했다.
*양성 감광성 고분자((positive photoresist): 자외선에 노출된 영역이 현상액에 쉽게 용해되는 감광성 재료
**광식각법(photolithography): 반도체 공정에서 주로 사용되는 패턴 형성법
***리플로우(reflow): 고온에서 고분자 구조 내에 흐름이 발생하여 형상이 곡면 형태로 변하는 현상
이러한 방식을 이용하면 원하는 크기와 색깔을 갖는 반구형 미세구조를 원하는 위치에 미리 설계한 방식대로 단일 단계에 형성할 수 있으며, 임의의 컬러 그래픽을 색소 없이 단일 물질만을 이용해 재현해 낼 수 있다.
색의 영구 보존이 가능한 초정밀 컬러 그래픽 기술은 빛의 입사 각도나 시야 각도에 따라 변색이 가능하며, 패턴의 한쪽 방향으로만 색깔을 보이며, 반대편으로는 투명한 야누스 형태의 특징을 갖는다. 이러한 구조색 그래픽은 최신 LED 디스플레이에 준하는 높은 해상도를 가지며 손톱 크기에 복잡한 컬러 그래픽을 담을 수 있고, 이를 대면적 스크린에 프로젝션도 가능하다.
연구를 주도한 김신현 교수는 “새롭게 개발한 무색소 컬러 그래픽 구현 기술이 향후 예술과 접목해 새로운 형태의 예술 작품을 표현하는 참신한 방법이 될 수 있으며 광학 소자 및 센서, 위변조 방지 소재, 심미성 포토카드 등을 포함한 광범위한 분야에 적용할 수 있을 것으로 기대된다”고 말했다.
우리 대학 손채림 석사가 제1 저자로 참여한 이번 연구 결과는 재료 분야의 권위있는 국제학술지‘어드밴스드 머터리얼즈(Advanced Materials)’ 2월 5일 자에 게재됐다. (논문명: Retroreflective Multichrome Microdome Arrays created by Single-Step Reflow, 단일 단계 리플로우 공정을 이용한 재귀반사형 다색 미세돔 배열 설계, DOI:10.1002/adma.202413143)
이번 연구는 한국연구재단의 미래융합파이오니어사업 및 중견연구자지원사업의 지원을 받아 수행됐다.
2025.02.26
조회수 4352
-
선천성면역을 조절하는 인공단백질 디자인, 차세대 백신·면역 치료제 개발 가능성 제시
우리 대학 생명과학과 김호민 교수 연구팀과 국제 공동연구팀인 미국 워싱턴대학교 단백질디자인 연구소 (Institute for Protein Design, IPD) 닐 킹 교수 (Prof. Neil King) 연구팀은 컴퓨터기반 단백질디자인 기술을 활용하여 선천성면역을 활성화시키는 새로운 인공단백질을 디자인하고, 그들의 3차원 분자구조를 규명하는데 성공했다고 10일 밝혔다.
김호민 교수 연구팀과 Neil King 교수 연구팀은 컴퓨터 기반 단백질디자인 기술을 활용하여 선천성면역 수용체인 TLR3와 높은 친화도를 갖는 인공단백질을 개발했다. 또한, 초저온 투과전자현미경 (Cryo-EM) 분석을 통해 설계된 인공단백질이 TLR3와 결합하는 분자결합모드를 규명하였다. 특히, 자연계의 TLR3 작용제(dsRNA)와는 전혀 다른 구조를 가진 디자인된 인공단백질에 의해 선천성면역 수용체 TLR3을 효과적으로 활성화시킬 수 있음을 보인 첫 사례이다.
생명과학과 김호민 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션 (Nature Communications)'에 1월 31일 출판됐다. (논문명 : De novo design of protein minibinder agonists of TLR3)
TLR3 (Toll-like Receptor 3)는 이중가닥 RNA (double-stranded RNA, dsRNA)를 인식하여 선천성 면역반응을 활성화하는 패턴 인식 수용체 (pattern recognition receptor)이다. 기존의 TLR3 작용제는 백신면역 증강제 (adjuvant) 및 항암면역치료제로 활용될 가능성이 있었으나, 화학적 불안정성, 면역 과활성화 위험, 균질한 대량제조의 어려움 등으로 인해 임상적 적용이 제한적이었다.
이에 연구팀은 컴퓨터 기반 단백질디자인 (computational protein design) 기술을 활용하여 TLR3과 결합하는 초소형 인공단백질 (minibinder)을 디자인하였다. 해당 인공단백질은 크기가 작고, 높은 안정성을 가지며, 지정한 TLR3의 특정 부위에만 특이적으로 결합할 수 있도록 디자인하였다. 이후 초저온 투과전자현미경 (Cryo-EM) 분석을 통해 설계된 인공단백질이 초기디자인 의도와 잘 부합되게 TLR3의 오목한 표면 (concave surface)에 결합하고 있음을 확인하였고, 이들의 분자상호작용을 규명하였다.
기존 dsRNA기반 작용제보다 더 정밀하게 TLR3 신호를 활성화할 수 있도록 Cryo-EM 구조를 통해 규명된 분자구조를 바탕으로 인공단백질을 이어 붙인 다중 결합(multivalent) 형태의 단백질을 추가적으로 개발하였고, TLR3 하위 신호인 NF-κB 신호를 활성화시킴을 확인하였다. 이를 통해 자연계에 존재하지 않은 디자인된 인공단백질에 의하여 선천성 면역반응을 효과적으로 조절할 수 있음을 확인하였다.
이번 연구는 KAIST 연구진과 미국 워싱턴대학교 단백질디자인 연구소 연구진 간의 긴밀한 국제공동연구를 통해 이루어졌으며, 향후 면역 조절 인공단백질에 기반한 다양한 백신면역 증강제, 항암면역치료제 등의 개발에 활용될 수 있을 것으로 기대한다.
교신저자인 김호민 교수는 “인공지능기반 단백질디자인 연구는 2024년 노벨화학상 (데이비드 베이커교수, 단백질디자인 연구소)을 수상하며 큰 주목을 받고 있으며, 인공지능 기술의 발전에 힘입어 빠르게 성장하고 있는 첨단바이오 연구분야이다. 향후 백신, 신약, 진단키트, 산업용효소 등 다양한 바이오신소재 개발에 크게 기여할 수 있을 것이다. 이번 연구는 긴밀한 국제 공동연구를 통해 우수한 성과를 거둔 성공적 사례”라고 말했다.
한편 이번 연구는 IBS 바이오분자 및 세포구조연구단의 지원을 받아 수행되었다.
2025.02.10
조회수 4003
-
펨토초보다 짧은 순간 전이상태 분자구조를 밝히다
즈웨일 교수(1999년 노벨화학상)가 창출한 펨토화학을 통해 화학반응 중 일어나는 분자구조 변화를 실시간에서 관측할 수 있는 길이 열렸지만, 엄밀한 의미에서 에너지에 따른 전이상태 (Transition-State) 구조 변화를 직접 관측한 예는 매우 드물다. KAIST 연구진은, 광분해 화학반응 전이상태의 분자구조 변화를 분광학 기법*으로 정확하게 측정하는데 세계 최초로 성공했다.
*분광학 기법: 빛과 분자의 상호작용을 통해 양자역학적 분자구조를 정확하게 알아냄
우리 대학 화학과 김상규 교수 연구팀이 화학반응의 전이상태 (Transition-State) 구조를 실험적으로 밝히는 데 성공했다고 4일 밝혔다.
화학반응 속도론이 개발되면서, 가장 중요한 핵심으로 자리잡은 개념이 ‘전이상태 (Transition-State)’다. 전이상태 이론(Transition State Theory, 이하 TST) 에서는 반응물과 생성물 중간에 위치한 전이상태의 분자구조 및 동역학적 특성에 의해 반응속도, 생성물의 상대적 수율, 에너지 분포 등이 결정된다. TST는 지난 1세기 동안, 모든 환경에서의 연소, 유기, 생화학 반응 등에 널리 응용 되어온 가장 보편적인 반응속도론이다.
그러나, 전이상태는 펨토초(10-15 second)보다 더 짧은 시간 동안만 존재하므로, 전이상태를 직접 실험적으로 관찰하는 것은 매우 어려운 일이며 항상 도전적인 과제로 남아있었다.
김상규 교수 연구팀에서 관측한 전이상태는 특별한 의미를 갖는다. 분광학적 기법을 통해, 분자가 전이상태로 접근하면서 가지는 구조 변화를 매우 정확하게 측정할 수 있었던 첫 번째 예라는 점이다.
분광학 기법으로 측정된 정확한 전이상태 분자구조 변화에 따라 관찰된 반응속도의 급격한 변화를 통해서, 분자구조와 화학반응성 간 긴밀한 상관관계도 아울러 증명되었다.
김상규 교수는 “복잡한 분자의 화학반응에서 전이상태에 접근하면서 급격하게 변화하는 분자구조를 분광학 및 반응동역학 기법으로 밝힌 것은 처음이며, 향후 많은 이론 및 실험적 연구를 촉진할 것으로 기대된다. 특히, 전이상태 구조는 특정 화학반응을 선택적으로 빠르게 할 수 있는 고효율 촉매 설계에 가장 근원적인 정보를 제공할 것이다.”라고 말했다.
이번 연구 결과는 김정길 박사 (제 1 저자), 강민석 박사과정 학생, 윤준호 박사(現 LG화학)가 공동 저자로 2025년 1월 ‘네이처 커뮤니케이션즈(Nature Communications, Vol. 16, 210) 에 대표적(Featured) 연구 성과로 발표됐다.
또한 매우 이례적으로 분광학 분야 최고 권위자인 MIT의 로버트 필드(Robert Field) 교수 및 이스라엘 벤구리온 대학 바라밴 (Baraban) 교수가 공동작성한 하이라이트 커멘트(Nature Communications, 16, 76)를 통해, 이번 연구 결과가 가지는 독창성과 시사성, 중요성 및 향후 실험물리화학 분야에서의 임팩트가 강조됐다.
한편 이번 연구는 한국연구재단의 중견연구사업 및 기초과학 4.0 중점연구소 (자연과학연구소)에서 지원받아 수행됐다.
2025.02.04
조회수 4580
-
초당 9,120프레임 포착 곤충눈 모사 카메라 개발
곤충의 겹눈은 빠르게 움직이는 물체를 병렬적으로 감지하고, 어두운 환경에서는 감도를 높이기 위해 시각세포가 여러 시간의 신호를 합쳐서 반응해 움직임을 결정한다. KAIST 연구진이 곤충의 생체를 모사하여 기존 고속 카메라가 직면했던 프레임 속도와 감도 간의 한계를 극복한 저비용 고속 카메라를 개발하는데 성공했다.
우리 대학 바이오및뇌공학과 정기훈·전산학과 김민혁 교수 연구팀이 곤충의 시각 구조에서 영감을 받아 초고속 촬영과 고감도를 동시에 구현한 새로운 생체모사 카메라를 개발했다고 16일 밝혔다.
고속 및 저조도 환경에서의 고품질 이미징은 많은 응용 분야에서 중요한 과제이다. 기존의 고속 카메라는 빠른 움직임을 포착하는 데 강점을 가지고 있지만, 프레임율을 높일수록 빛을 수집할 수 있는 시간이 줄어들어 저조도 환경에서는 감도가 부족한 문제가 발생해왔다.
이를 해결하기 위해 연구팀은 곤충의 시각 기관처럼, 여러 개의 광학 채널과 시간 합산을 활용하는 방식을 채택했다. 기존 단안 카메라 시스템과 달리, 생체 모사 카메라는 겹눈을 통해 서로 다른 시간대의 프레임을 병렬적으로 획득할 수 있다.
이 과정에서 각 프레임이 중첩되는 시간 동안 빛을 합산함으로써 신호대잡음비를 증가시킬 수 있다. 연구팀은 이러한 방식을 적용한 생체 모사 카메라가 기존의 고속 카메라 대비 최대 40배 더 어두운 물체까지 포착할 수 있었다고 밝혔다.
또한 연구팀은 카메라의 속도를 크게 향상하기 위해 ‘채널 분할’ 기술을 도입하여 패키징에 사용된 이미지센서보다 수천 배 빠른 프레임률을 획득할 수 있었다. 이에 더해 ‘압축 이미지 복원’ 알고리즘을 활용해 합산된 프레임에서 발생할 수 있는 흐림 현상을 제거하며, 선명한 이미지를 재구성했다.
연구팀은 제작된 생체 모사 카메라는 두께 1mm 이하의 매우 얇고, 작은 크기에도 불구하고 초당 9,120프레임을 촬영할 수 있고, 낮은 조도에서도 선명한 이미지를 제공한다.
향후 연구팀은 3D 이미징 및 초해상도 이미징을 위한 고급 이미지 처리 알고리즘을 통해 바이오의료 응용뿐 아니라 모바일 등 다양한 카메라 응용 기술을 개발할 예정이라고 밝혔다.
제1 저자인 바이오및뇌공학과 김현경 박사과정은 “제작된 곤충 눈 카메라가 작은 크기임에도 불구하고 고속 및 저조도 촬영에서 뛰어난 성능을 발휘하는 것을 실험적으로 검증했다”라며, “이 카메라는 이동식 카메라 시스템, 보안 감시, 의료 영상 등 다양한 분야에서의 응용 가능성을 열었다”라고 말했다.
바이오및뇌공학과 김현경 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 1월 출판됐다. (논문명 : Biologically-inspired microlens array camera for high-speed and high-sensitivity imaging)
DOI: https://doi.org/10.1126/sciadv.ads3389
한편 이번 연구는 국방기술진흥연구소, 과학기술정보통신부, 그리고 산업통상자원부의 지원을 받아 수행됐다.
2025.01.16
조회수 4451
-
신개념 생체형틀법 캠바이오(CamBio) 개발
생물학적 구조는 인공적으로 복제하기 어려운 정도의 복잡한 특징을 가지고 있지만 이러한 생체 구조체를 직접적으로 활용여 제작하는 생체형틀법*은 다양한 분야의 응용으로 사용됐다. KAIST 연구진이 이전에 활용할 수 없었던 생체 구조체를 활용하고, 생체형틀법을 통해 적용될 수 있는 영역을 넓히는데 성공했다.
*생체형틀법: 바이러스부터 우리의 몸을 구성하는 조직과 장기에 이르기까지 이러한 생체 구조의 기능을 활용하고자, 생체 구조를 형틀로 사용하여 기능성 구조재료를 만들어내는 방식
우리 대학 신소재공학과 장재범, 정연식 교수 공동연구팀이 생체 시료 안의 특정 내부 단백질을 활용하고 높은 조정성을 지닌 생체형틀법을 개발했다고 10일 밝혔다.
기존의 생체형틀법 방법은 주로 생체시료의 외부 표면만을 활용하거나, 한정된 치수와 샘플 크기로 인해 다양한 생체 구조체들의 구조-기능 상관성을 활용하여 기능성 나노구조체를 제작하기 어렵다는 한계를 가지고 있다.
이런 문제를 해결하고자 연구팀은 다양한 생체 내부 구조체를 활용하고, 높은 조정성을 가지는 생체형틀법을 연구했다.
연구 결과, 다양한 단백질들로 구성된 생체 시료 안에서 특정한 단백질 구조체로부터 선택적으로 다양한 특정 및 크기를 가진 나노구조체를 합성할 수 있는 ‘캠바이오(CamBio, Conversion to advanced materials via labeled Biostructure’라는 생체형틀법을 개발했다. 캠바이오(CamBio) 방식에서는 여러 제조·생물 분야 기술들을 병합하여 생체 시료에서 제작할 수 있는 기능성 나노구조체의 높은 조정성을 확보했다.
반복적으로 항체를 붙이는 기술, 세포를 일정한 모양으로 배열하는 기술, 그리고 조직을 얇게 자르는 기술을 통해, 캠바이오(CamBio)로 만든 기능성 나노구조체가 물질 감지에 사용되는 표면증강 라만산란(SERS)* 기판에서 향상된 성능을 보였다.
*표면증강 라만산란(SERS): 빛을 이용해 아주 적은 양의 물질도 감지할 수 있는 기술로, 금이나 은 같은 금속 표면에서 특정 물질이 빛과 반응하며 신호가 크게 증폭되는 원리
연구팀은 세포 속 골격 단백질을 이용해 만든 나노입자 체인은 반복적으로 항체를 붙이는 과정을 통해 구조를 더 자유롭게 조정할 수 있었고, 최대 230% 향상된 SERS 성능을 보였다.
또한, 연구팀은 세포 내부의 구조체를 활용하는 것에서 확장해 고기 내부에 있는 근육 조직을 동결 절편기를 활용해 시료를 얻고, 이에 캠바이오 과정을 수행해 금속 입자들로 이루어진 주기적인 밴드를 가지고 있는 기판 제작에도 성공했다. 이와 같은 방식으로 기판을 제작하는 것은 생체 시료를 활용해 대면적으로 제작할 수 있을 뿐만 아니라 가격 경쟁력을 가지는 방식임을 보인다.
연구팀이 개발한 캠바이오는 활용될 수 있는 생체시료의 범위를 넓힘으로써 다양한 연구 분야가 직면한 문제를 해결할 방식으로 생체형틀법이 사용될 것으로 기대된다.
제1 저자인 송대현 박사과정은 “캠바이오를 통해서 더욱 다양한 단백질 구조체를 활용할 수 있는 생체형틀법을 포괄적으로 적립했다”라며 “유전자 편집이나 3D 바이오프린팅과 같은 최신 생물 기술 및 새로운 물질 합성 기술과 결합이 계속된다면, 다양한 응용 분야에 생체 구조가 활용될 수 있을 것이다”라고 말했다.
신소재공학과 송대현 박사과정, 송창우, 조승희 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science )'에 지난해 11월 13일 자 온라인 공개됐다. (논문명 : Highly Tunable, Nanomaterial-Functionalized Structural Templating of Intracellular Protein Structures Within Biological Species) https://doi.org/10.1002/advs.202406492
한편 이번 연구는 과학기술정보통신부 과학난제도전융합연구개발사업 (한국연구재단 2024), 과학기술정보통신부 선도연구센터 (웨어러블 플랫폼소재 기술센터, 한국연구재단 2023), 과학기술정보통신부 선도연구센터 (글로벌 생체융합 인터페이싱 소재 센터, 한국연구재단 2024), 과학기술정보통신부 국가생명연구자원 선진화사업 (바이오 데이터 품질선도센터, 한국연구재단 2024) 등의 지원을 받아 수행됐다.
2025.01.10
조회수 4648
-
에너지 저장, 하중지지 동시 가능한 구조배터리 개발
친환경 에너지 기반 자동차, 모빌리티, 항공우주 산업군 등에 활용되는 구조배터리는 높은 에너지 밀도를 통한 에너지 저장과 높은 하중 지지의 두 기능을 동시에 충족되어야 한다. 기존 구조배터리 기술은 두 가지 기능이 상충하여 동시에 향상하기 어려웠지만 우리 연구진이 이를 해결하기 위한 기반 기술 개발에 성공했다.
우리 대학 기계공학과 김성수 교수 연구팀이 하중 지지가 가능하고 화재 위험이 없고 얇고 균일한 고밀도 다기능 탄소섬유 복합재료 구조 배터리*를 개발했다고 19일 밝혔다.
*다기능 복합재료 구조 배터리(Multifunctional structural batteries): 복합재료를 구성하는 각 소재가 하중 지지 구조체 역할과 에너지 저장 역할을 동시에 수행할 수 있다는 점을 의미
초기의 구조 배터리는 상용 리튬이온전지를 적층형 복합재료에 삽입한 형태로, 기계적-전기화학적 성능 통합 정도가 낮으므로, 이는 소재 가공, 조립 및 설계 최적화에 어려움이 있어 상용화되기 어려운 실정이었다.
이러한 문제를 해결하기 위해 김성수 교수 연구팀은 ‘에너지 저장이 가능한 복합재료’의 관점에서 기존 복합재료 설계에서 중요한 계면 및 경화 특성을 중심으로 구조전지의 다기능성을 최대화할 수 있는 고밀도 다기능 탄소섬유 복합재료 구조 배터리를 개발하기 위한 체계적인 방식을 연구했다.
연구팀은 이번 연구를 통해 기계적 물성이 높은 에폭시 (Epoxy) 수지와 이온성 액체(ionic liquid)/탄산염 전해질(carbonate electrolyte) 기반 고체 폴리머 전해질이 단단해지는 경화 메커니즘을 분석하고 이를 통해 적절한 온도와 압력 조건을 제어하여 경화 공정을 최적화하였다.
또한 개발된 구조 배터리는 진공 분위기에서 복합재료를 압축 성형하여 구조배터리 내에서 전극과 집전체 역할을 담당하는 탄소섬유의 부피 비율을 기존 탄소섬유를 활용한 배터리 대비 약 160% 이상 향상시켰다.
이를 통해 전극과 전해질과의 접촉면이 획기적으로 증가함으로써 전기화학적 성능을 개선된 고밀도 구조 배터리를 제작할 수 있었다. 뿐만 아니라 경화 공정 중 구조배터리 내부에 발생할 수 있는 기포를 효과적으로 제어하여 구조 배터리의 기계적 물성을 동시에 향상시킬 수 있었다.
연구 책임자인 김성수 교수는 “고강성 초박형 구조 배터리의 핵심 소재인 고체 폴리머 전해질을 소재 및 구조적 관점에서 설계하는 프레임워크를 제시하였고, 이러한 소재 기반의 구조배터리를 자동차, 드론, 항공기, 로봇 등의 구조체 내부에 삽입하여 한번 충전으로 작동시간을 획기적으로 늘릴 수 있는 차세대 다기능 에너지 저장 어플리케이션 개발에 일조하는 기반 기술이 될 것”이라고 연구의 의미를 설명했다.
기계공학과 모하마드 라자(Mohamad Raja) 석사가 제1 저자로 참여하고 국제 저명 학술지인 ‘ACS Applied Materials & Interfaces’에 9월 10일 자로 게재됐다. 이번 연구는 해당 논문의 우수성을 인정받아 국제 학술지의 표지 논문(Supplementary cover)으로 선정됐다.
(논문명 : Thin, Uniform, and Highly Packed Multifunctional Structural Carbon Fiber Composite Battery Lamina Informed by Solid Polymer Electrolyte Cure Kinetics. https://doi.org/10.1021/acsami.4c08698).
한편, 이번 연구는 한국연구재단 중견연구사업 및 국가반도체연구실개발사업의 지원으로 수행되었다.
2024.11.19
조회수 5458
-
7배 이상 높은 발광 3차원 퀀텀닷 나노구조체 개발
3차원 광학 나노구조체는 빛의 진폭, 위상, 편광 상태를 정밀하게 조작할 수 있어 포토닉스 분야에서 큰 관심을 받고 있다. 한국 연구진이 기존 기술로는 구현이 어려웠던 3차원 퀀텀닷 나노구조체를 정교하게 쌓아 올리는 적층 방식으로 구현하는 데 성공했다.
우리 대학 신소재공학과 정연식 교수, 전기및전자공학부 장민석 교수, 동국대학교 최민재 교수 공동 연구팀이 초미세 전사 프린팅 기반으로 3차원 퀀텀닷 구조 제작 기술을 개발했다고 27일 밝혔다.
연구팀이 개발한 이 기술은 대부분의 나노입자에 적용될 수 있어 범용성이 뛰어나고 우수한 패턴 품질을 제공할 수 있다. 또한, 프린팅 방식으로 대면적화가 가능해 고성능 소자 양산에 활용할 수 있는 장점을 가진다.
특히 편광 빛에 대한 선택적 반응을 보이는 구조적 비대칭성을 가진 대면적 카이랄 구조체를 구현해 기존 최고 기록인 19도* 대비 향상된 약 21도의 세계 최고 수준 **원편광 이색성(Circular dichroism) 성능을 달성했다.
*참조: https://www.nature.com/articles/ncomms14180/figures/2
**원편광 이색성(Circular dichroism): 광학 활성이 있는 물질이 왼쪽과 오른쪽의 편광을 다르게 흡수해 나타나는 현상. 주로 단백질 등 유기화합물들의 구조체를 분석하는 용도로 활용됨. 높은 원편광이색성(단위: 도) 세기를 갖는 물질을 활용할수록 보다 정밀하고 빠른 검출이 가능해짐. 이론적으로 구현할 수 있는 최댓값은 45도임.
따라서 이 기술은 카이랄 특성을 가진 바이오 물질들을 검출할 수 있는 플랫폼으로 활용될 수 있으며, 높은 반응성 덕분에 더 정밀하고 빠른 약물 스크리닝이 가능할 것으로 기대된다.
또한, 장민석 교수팀이 설계한 그물 형태의 퀀텀닷 나노 패턴을 해당 기술을 활용하여 실험적으로 구현한 결과, 일반 퀀텀닷 필름 대비, 약 7배 이상 높은 발광 효율을 달성해 향후 고성능 퀀텀닷 디스플레이 소자에의 응용 가능성을 보였다.
연구를 주도한 정연식 교수는 “이번 연구는 퀀텀닷뿐만 아니라 다양한 고성능 콜로이드 소재를 3차원 나노 구조화함으로써, 차세대 광학 메타물질 및 고감도 바이오센서 분야 등에서 새로운 장을 열 것으로 기대된다 아울러 광학 설계 및 분석 연구와 초미세 나노공정 기술이 융합해 이룬 성공 사례의 하나로도 볼 수 있다”라고 말했다.
신소재공학과 김건영 박사와 전기및전자공학부 김신호 박사가 공동 제1 저자로 연구를 주도한 이번 연구는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 8월 14일 게재됐다.
(논문명: Chiral 3D structures through multi-dimensional transfer printing of multilayer quantum dot patterns)
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 지원하는 나노 및 소재기술개발사업, 교육부가 추진하는 이공분야 학술연구사업, 산업통상자원부에서 추진하는 전자부품산업기술개발사업의 지원을 받아 수행됐다.
2024.09.28
조회수 5936