-
공과대학, 2017년 올해의 자랑스러운 동문상에 이우종 LG 사장 선정
〈 이 우 종 사장 〉
우리 학교 공과대학은 2017년 올해의 자랑스러운 공과대학 동문으로 이우종 LG전자 VC사업본부 사장을 선정했다고 5일 밝혔다.
공과대학의 ‘올해의 자랑스러운 동문상’은 산업기술 발전에 공헌하거나 뛰어난 학문 성취를 통해 우리 대학의 명예를 높인 동문을 2014년부터 매년 선정해 수여하는 상이다.
제1회 2014년 동문상은 유태경 ㈜루멘스 대표가, 2015년 제2회 수상자로는 넥슨 창업자인 김정주 ㈜NXC 대표가 각각 선정됐는데 2016년에는 해당자가 없어 시상식을 갖지 못했다.
3회째인 ‘2017년 올해의 자랑스러운 동문상’수상자로 선정된 이우종 LG전자 VC사업본부 사장은 1981년 산업공학과 석사과정을 졸업한 대우자동차(現 한국GM) 개발총괄 임원출신으로 LG CNS에 영입된 2000년부터 LG그룹 전반의 자동차 부품산업의 밑그림을 그려 온 핵심인물로 꼽히고 있다.
이 사장은 특히 “2013년 신설된 LG전자 VC사업본부를 이끌며 자율주행과 친환경을 개발화두로 내걸고 모터와 전기제어기술을 적용한 전기차 구동장치, 카메라 기술이 배합된 자율주행차용 카메라 등 주요제품의 개발단계부터 아이디어를 제공해 온 자동차 산업계의 창의적 엔지니어이자 선도적인 경영자로 국내 전장산업을 세계적인 수준으로 견인해 KAIST의 명예를 높였다”고 KAIST 공대 측은 선정이유를 밝혔다.
시상식은 김종환 공과대학장, 방효충 공과대학 부학장, 이태식 산업및시스템공학과 학과장, 이태억 KAIST 교육원장 등이 참석한 가운데 8일(수) 오후 4시30분 대전 본원 산업경영학동(E2) 공동강의실(1501호)에서 열린다.
시상식을 마친 후에는 ‘LG전자의 자동차 부품사업’을 주제로 수상기념 강연과 함께 질의응답 등 후배 재학생들과의 대화를 나누는 시간도 갖는다.
2017.11.06
조회수 12839
-
경영대학, 와튼 리서치 데이터 서비스-SSRN 이노베이션 상 수상
〈 이인무 교수, Robert Zarazowski (WRDS), Gregg Gordon (SSRN), 이재규 교수 〉
우리 대학 경영대학이 지난 26일 열린 국제경영대학발전협의회(Association to Advance Collegiate Schools of Business, AACSB) 컨퍼런스에서 ‘WRDS-SSRN 이노베이션 상’을 수상했다.
WRDS-SSRN 이노베이션 상은 미국 명문 MBA인 와튼 스쿨(The Wharton School)의 데이터 분석 및 금융 연구 플랫폼 '와튼 리서치 데이터 서비스(WRDS)'에서 수여하는 상으로, 세계 최대의 출판사인 엘스비어(Elsevier)의 자회사로 사회과학분야 학술논문을 제공하는 연구 네트워크인 SSRN과의 협력으로 만들어졌다.
이 상은 탁월한 연구 성과를 이뤄낸 경영대학에 수여하며 금융 및 회계를 포함한 광범위한 경영분야에서 선구적인 연구의 가시성을 높이기 위해 제정됐다. 매년 북미, 유럽 및 아시아·태평양 지역별로 연구논문 실적 및 인용 횟수 등을 기준으로 연구의 혁신 및 우수성이 뛰어난 대학을 수상자로 선정한다. 올해 아시아·태평양 지역에서는 KAIST 경영대학이 선정되었다.
경영대학 김영배 학장은 “KAIST 경영대학이 WRDS-SSRN 이노베이션 상을 수상하게 돼 매우 기쁘다“며 “경영대학은 학문적 우수성을 기반으로 혁신적인 연구 활동에 중점을 두고 있으며 WRDS 및 SSRN로부터 이를 인정받은 것 같아 영광이다”며 소감을 밝혔다.
실제 경영대학은 사회적기업가 MBA나 녹색경영정책 석사과정 등 미래환경과 사회변화에 선도적으로 대응하는 교육프로그램을 운영중이다.
WRDS의 로버트 자라쇼우스키 전무이사는 “KAIST 경영대학이 ‘WRDS-SSRN 이노베이션 상’을 수상하게 된 것은 대단한 일”이라며 “WRDS는 KAIST 경영대학이 비즈니스 교육의 성장 및 혁신을 선도하고 헌신한 점을 높이 평가한다”고 말했다.
경영대학은 1995년 국내 최초 전일제 MBA 프로그램을 선보였으며 국내 최고의 이공계 연구대학인 KAIST의 특성을 살려 기술과 경영의 융합형 전문인력 양성에 주력하고 있으며, 국내 경영대학 중에서 유일하게 4개 국제기관(AACSB, GMAC, EQUIS, PIM)으로부터 공인 받았다.
2017.11.02
조회수 15409
-
기계공학과 성형진 교수, 이달의 과학기술인상 11월 수상자 선정
기계공학과 성형진 교수가 과학기술정부통신부 및 한국연구재단으로부터 '이달의 과학기술인상 11월 수상자' 로 선정됐다. 성형진 교수는 동전크기의 미세유체칩(Lab-on-a-chip) 내에 마이크로미터 규모의 미세 액체방울을 정교하게 제어할 수 있는 기술을 개발해 미세유체역학 연구 역량을 강화한 점을 높게 평가받았다.
차세대 실험 및 진단기술인 미세유체칩은 극소량의 시료만으로 복잡하고 다양한 실험이 가능한 바이오 마이크로칩이다. 의·약학뿐만 아니라 보건과 환경 분야에서도 주목받고 있는 기술이지만 미세유체역학의 중요 기술 중 하나인 유체 샘플의 온도제어 기술은 정교성이 낮아 미세유체칩의 활용 확대를 위해 극복해야할 한계로 남았다.
성 교수는 음향과 빛 에너지를 이용해 신속·정교하게 미세 액체방울의 온도를 제어하는 '음향열적 가열법'을 독자 개발했다. 이는 점탄성 물질에 음향파가 흡수되면서 발생하는 열을 이용하는 가열법이다. 가열 속도가 빠르고 시공간적 온도 제어가 용이해 원하는 부분에 국소 가열이 가능하다. 아울러 성 교수는 유전물질의 증폭 방법인 '중합효소 연쇄반응'에 직접 개발한 기술을 적용해 1~2시간 소요되던 반응처리 시간을 3분까지 획기적으로 단축하는 성과를 내기도 했다.
성형진 교수는 "미세유체역학의 활용성을 높인 것에 의미가 있다"며 "검역, 법의학수사 등 생화학 분야와 건강검진, 신약개발 등 헬스케어 분야의 기술 혁신을 이끌 수 있을 것으로 기대된다"고 말했다.
2017.11.01
조회수 13413
-
조인진 박사과정, 국제 대사공학 서밋 최우수 포스터 발표상 수상
생명화학공학과 조인진 박사과정 학생(지도교수 이상엽 특훈교수)이 지난 10월22일부터 24일까지 중국 베이징에서 열린 ‘국제 대사공학 서밋 (International Metabolic Engineering Summit)’에서 최우수 포스터 발표상을 수상했다. ‘국제 대사공학 서밋’은 대사공학 분야에 종사하는 세계 각국의 과학자는 물론 기업 연구원들이 대사공학 분야 최신의 연구결과를 발표하고 네트워크를 구축하는 국제학술대회이다.
올해 서밋에는 전 세계 각국에서 5백여 명의 연구자들이 참석해 기조강연과 포스터 발표 등 활발한 학술교류 활동을 진행했다. 대학원생들과 박사후연구원(일명 포닥, Post-Doctor), 그리고 연구원들이 겨루는 포스터 논문발표에서는 최우수 논문을 대상으로 장려상 3명, 우수상 2명, 최우수상 1명을 각각 선정, 시상했는데 조인진 KAIST 박사과정 학생이 최우수상 수상자로 선정되는 영예를 안았다. 조인진 박사과정 학생에게 최우수 포스터 발표상을 안겨준 발표논문 제목은 ‘재조합 대장균을 이용해 각종 플라스틱의 원료물질로 사용되는 테레프탈산(terepthalic acid)을 파라-자일렌(p-xylene)으로부터 전환’이다.
테레프탈산은 일반적으로 파라-자일렌의 산화공정을 통해 생산되는데 이 공정은 고온·고압 조건이 필요하고, 반응과정에서 유독성 촉매를 필요로 하는 단점이 있다. 조인진 박사과정 학생이 지웨이 루오(Ziwei Luo) 박사과정 학생과 공동연구 수행을 통해 개발에 성공한 생물학적 전환공정은 기존 화학공정과 대비해 상온·상압조건에서 진행될 뿐만 아니라 환경 친화적이며, 약 97%의 높은 전환율을 보이는 장점이 있다.
이상엽 특훈교수는 “이번 수상에서 더 나아가 후속연구인 포도당으로부터의 테레프탈산 생산에 관한 연구수행에 집중하면 재조합 대장균을 통한 바이오매스기반의 환경 친화적인 테레프탈산 생산도 가능하다”고 기대했다.
2017.10.31
조회수 13620
-
유승협 교수, 일회용 전자기기에 쓰일 유연 플래시메모리 개발
〈 문 한 얼 박사, 유 승 협 교수 〉
우리 대학 전기및전자공학부 유승협 교수, 생명화학공학과 임성갑 교수 공동 연구팀이 유기물 기반의 유연하면서도 우수한 성능을 갖는 플래시 메모리를 개발했다.
이 기술을 통해 본격적인 웨어러블 전자기기 및 스마트 전자종이 등의 개발에 기여할 수 있을 것으로 기대된다.
문한얼 박사, 이승원 박사가 주도한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 9월 28일자 온라인 판에 게재됐다.
플래시 메모리는 태블릿, 스마트폰, USB 드라이브 등 대부분의 IT 기기에서 사용되는 정보 저장을 위한 필수 소자이다. 웨어러블 및 유연 스마트 기기를 제작하기 위해서는 기기에 들어갈 메모리도 매우 우수한 유연성을 갖게 하는 것이 중요하다.
하지만 소재의 제약으로 인해 유연성과 성능을 동시에 갖춘 유연 플래시 메모리의 구현은 사실상 이뤄지지 못했다.
연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, iCVD)’을 이용해 유연하면서도 우수한 절연 특성을 갖는 고성능의 고분자 절연막 군(群)을 제작했다. 그리고 이를 이용해 최적의 플래시 메모리 동작이 가능하도록 설계했다.
기존의 고분자 절연막을 사용한 메모리는 일정 정도의 성능을 내기 위해서 100V(volt) 이상의 높은 전압이 필요했다. 만약 낮은 전압으로 구동하도록 제작하면 한 달 미만의 짧은 유지기간을 갖는 문제점이 있었다.
연구팀이 제작한 플래시 메모리는 10V 이하의 프로그래밍 전압과 10년 이상의 데이터 유지시간을 갖는 동시에 2.8%의 기계적 변형률에도 메모리 성능을 유지했다. 이는 기존의 무기물 절연층 기반 플래시 메모리가 1% 수준의 변형률만을 허용하던 것을 대폭 향상시킨 것이다.
연구팀은 개발한 플래시 메모리를 6 마이크로미터 두께의 플라스틱 필름에 제작해 실제 접을 수 있는 메모리를 시연했다. 또한 인쇄용 종이 위에도 제작에 성공해 종이 재질의 전자신문, 전자명함 등 일회용 스마트 전자제품에도 활용할 수 있는 길을 열었다.
유 교수는 “유연 트랜지스터 연구는 많은 진보가 있었지만 유연 플래시 메모리는 상대적으로 발전이 느렸다. 메모리 소자의 구성요소가 갖는 만족요건이 까다롭기 때문이다”며 “이번 연구로 고유연성, 고성능의 플래시 메모리의 가능성이 확인돼 본격적인 웨어러블 전자기기, 스마트 전자종이 등에 기여할 것이다”고 말했다.
이번 연구 결과는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 사진 설명
사진1. 유연 플레쉬 메모리의 구조
사진2. 폴더블 플래시 메모리
사진3. 종이에 제작된 플래시 메모리
2017.10.26
조회수 19745
-
이현주 교수, 백금 사용량 10분의1로 줄인 단일원자 촉매 개발
〈 이 현 주 교수, 김 지 환 학생 〉
우리 대학 생명화학공학과 이현주 교수와 서울시립대 한정우 교수 공동 연구팀이 기존 촉매의 백금 사용량을 10분의 1로 줄일 수 있는 백금 단일원자 촉매를 개발했다.
이는 매우 안정적인 고함량의 백금 단일원자 촉매로 연구팀은 ‘직접 포름산 연료전지(Direct formic acid fuel cells)’에 적용하는 데 성공했다.
김지환 학생이 1저자로 참여한 이번 연구 결과는 재료 과학분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 9월 11일자 온라인 판에 게재됐다.
백금 기반의 축매는 활성과 안정성이 높아 다양한 촉매 반응에 적용되지만 가격이 비싸고 희귀하기 때문에 백금의 사용량을 최대한 줄이는 것이 중요하다.
그 중 단일원자 촉매는 백금 입자 크기를 원자 단위로 줄여 모든 원자가 반응에 참여하기 때문에 백금 촉매의 가격을 획기적으로 낮출 수 있다. 또한 두 개 이상의 원자들이 붙어 있는 앙상블 자리(ensemble site)가 없기 때문에 원하는 생성물을 선택적으로 얻을 수 있다.
이러한 장점에도 불구하고 단일원자 촉매는 낮은 배위수(coordination number)와 높은 표면자유에너지로 인해 쉽게 뭉치고 안정성이 떨어져 실제 장치에 적용이 어렵다는 한계를 갖는다.
연구팀은 백금 단일원자 촉매의 안정성을 높이기 위해 금속 원소인 안티몬이 첨가된 주석 산화물(Antimony-doped tin oxide, ATO) 위에 백금 단일원자가 주석과의 합금 형태로 존재하는 구조를 개발했다.
연구팀은 이러한 구조가 백금 단일원자가 안티몬-주석 합금 구조에서 안티몬의 자리를 대신해 열역학적으로 안정적인 형태로 존재함을 계산을 통해 증명했다.
연구팀이 개발한 촉매는 포름산 산화반응에서 일반적으로 사용되는 촉매인 상용백금촉매(Pt/C)보다 최대 50배 높은 활성을 보였고 장기안정성 또한 월등하게 높았다.
또한 연구팀은 이 촉매를 막과 전극으로 구성된 직접 포름산 연료전지에 적용했다. 단일원자 촉매를 완전지 형태의 연료전지에 적용한 것은 최초의 시도로, 기존 촉매에 비해 10분의 1 정도만의 백금을 사용해도 비슷한 출력을 얻을 수 있다.
이현주 교수는 “귀금속 단일원자 촉매의 가장 큰 문제점인 낮은 함량과 낮은 안정성을 높일 수 있었고 최초로 직접 포름산 연료전지에 적용했다”며 “연료전지에 적용 가능한 고함량 및 고안정성 귀금속 단일원자 촉매의 개발에 기여할 수 있을 것이다”고 말했다.
이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 백금 단일 원자 촉매의 개념도
그림2. 관찰한 촉매 및 백금 단일 원자 (흰색 원으로 표시된 밝은 점)
2017.10.24
조회수 19595
-
Open KAIST 2017 행사, 11월 2일~3일 대전 본원에서 개최
우리대학은 청소년과 일반인들이 세계적인 연구성과물을 쏟아내고 있는 교내 연구·실험실 및 연구센터 등 연구현장을 둘러보고 또 각종 연구성과를 직접 보고 체험할 수 있는 ‘OPEN KAIST 2017’행사를 11월 2일과 3일 이틀간 대전 본원 캠퍼스에서 개최한다. 2001년에 시작돼 올해로 9회째를 맞는 ‘OPEN KAIST’는 교내행사로는 가장 큰 규모로 열리는 우리대학의 가장 대표적인 과학문화 대중화 행사인데 공과대학(학장 김종환 교수·전기및전자공학과)이 주관해 2년마다 개최한다.
이 행사는 특히 일반인에게 과학에 대한 다채로운 과학관련 프로그램 운영을 통해 과학에 대한 궁금증을 풀어주고 미래 한국의 과학기술을 이끌어 갈 청소년들에게는 과학에 대한 꿈과 희망을 키워주는 체험프로그램이다. 다양한 전시물과 프로그램 운영으로 입소문이 나면서 행사 때마다 1만 명 이상의 학생과 일반인이 우리대학을 방문할 정도로 인기를 끌고 있다.
올 행사에는 기계공학과·항공우주공학과·문화기술대학원·전기및전자공학부·전산학부·신소재공학과 등 20개 학과와 인공위성연구소·헬스사이언스연구소·IT융합연구소 등 3개 연구센터, 홍보실 등이 참여한다. 지난 2015년 8회 행사 때보다 참여 학과 및 부서는 4개, 운영 프로그램 수는 6개가 각각 더 늘었다. 이들 학과 및 연구센터는 행사기간 중 ▲연구실 투어 ▲연구성과 전시회 ▲학과소개 ▲특별강연 등 4개 분야에서 총 70개 프로그램을 운영한다.
이번 행사에서 가장 관심을 끌 것으로 기대되는 프로그램은 공과대학이 2일~3일 이틀간 주관, 선보이는 ‘AI 월드컵 2017’ 시범경기다. 올 12월 예정인 ‘AI 월드컵 2017’ 본선을 앞두고 열리는 시범경기는 AI 월드컵 구현방법을 디스플레이 형태로 시연함으로써 참가자들이 보다 직관적으로 이해할 수 있도록 도움을 주고자 마련됐다. ‘AI 월드컵 2017’은 우리대학이 구기 종목 중 인공지능을 채택해서 세계 최초로 여는 공식 축구대회다. Q-Learning을 포함한 AI기술을 기반으로 각 팀당 5대의 학습된 가상의 선수로봇이 참가자의 조작 없이 상대팀 골대에 골을 넣어 득점하는 경기방식으로 치러진다. 참가자가 코딩해서 대회용 서버(Server)에 업로드하면 자동으로 매칭(Matching)을 통해 다른 팀과 경기를 대결하는 롤링 업데이트(Rolling Update)형 풀리그(Full League) 방식으로 진행된다. 11월 1일부터 24일까지 예선기간 동안 누적 경기실적에서 고득점을 획득한 상위 팀끼리 12월 1일 우리대학 본원캠퍼스 KI빌딩에서 결승전을 치룰 예정이다.
다양한 연구실 투어프로그램도 눈길을 끄는데 기계공학과 이두용 교수의‘로봇 및 시뮬레이션 연구실’에서는 의료용 시뮬레이션을 직접 체험할 수 있다. 의료용 시뮬레이션은 의료시술을 훈련하거나 계획하기 위해 실제 시술을 가상환경에서 사실적으로 재현하는 기술이다. 특정 시술에 대한 경험이 부족한 의사들은 훈련용 시뮬레이션을 통해 가상으로 시술을 경험함으로써 숙련도를 높일 수 있고 계획용 시뮬레이션을 이용해서는 시술계획을 사전에 평가·개선할 수 있기 때문에 실제 시술 시 성공률을 높일 수 있다.
항공우주공학과 이정률 교수 연구실은 인공지능 기술을 촬영용 드론이나 RC 자동차 등에 적용해 비행기의 외관 손상을 찾는 방법 등에 대해 소개한다. 또 권세진 교수 로켓연구실에서는 이 연구실에서 직접 제작·발사한 과학로켓(SNUKA Ⅰ&Ⅱ)을 구경하고 설명을 들을 수 있다. 전기및전자공학부 최정우 교수 연구실에서는 열을 이용해서 공기를 압축하고 팽창시켜 소리를 생성하고 음악을 재생하는 신소재 그래핀을 이용한 열 음향 스피커를 시연한다. 이와 함께 건설및환경공학과 김아영 교수 연구실은 도심환경의 정밀한 3차원 맵핑(Mapping)과 관련한 다양한 연구를 수행하고 있는데 이 연구실에서 직접 제작한 모바일 매핑 시스템을 보여주면서 설명과 함께 어떻게 이 맵이 만들어지는지를 실시간으로 보여준다. 모바일 매핑 시스템은 레이저 스캐너·카메라·관성센서·GPS 등 여러 센서를 차량에 장착한 이동형 측량시스템인데 측량이 필요한 곳으로 차량을 이동시키면서 데이터를 획득하고 획득한 데이터를 기반으로 점군 기반의 정밀한 3차원 맵을 생성할 수 있다.
우리대학의 최신 연구성과물도 전시된다. 바이오및뇌공학과는 혈중 암세포 선별 및 분석시스템과 인간감정 모니터링시스템을, 그리고 헤드셋 형태의 뇌파 기기를 머리에 쓰고 상상을 통해 외부기기를 조작하는 뇌·기계 인터페이스 기술을 시연한다. 이도헌 교수가 운영하는 유전자 동의보감사업단에서는 인공지능 가상인체를 이용한 식·약품 발굴기술 등을 전시한다. 산업및시스템공학과는 수학적 모델링·최적화·인공지능 알고리즘이 제조공정에서 어떻게 활용되는지를 보여주는 ‘레고 스마트 제조시스템’, 공정 및 제품 공급현황에 따라 최적화한 건설 및 조선공정을 제시하는 ‘제조 AR/VR 시스템’등 첨단 제조기술을 소개한다. 또 IoT 및 인터넷을 통해 수집한 빅데이터를 산업의 수요에 맞도록 분석해주는 ‘데이터 분석기술’과 ICT 기술과 인문사회과학 이론을 융합해 스마트폰 중독에 대응하기 위해 만든‘스마트폰 중독 자동 판별시스템’등 인간공학 기술도 함께 보여준다.
이밖에 조천식녹색교통대학원은 정지동작과 이동 동작이 가능한 수직 이·착륙 소형 항공기 형태의 드론을 시연한다. 문화기술대학원 비주얼미디어연구실이 보여주는 연구성과물은 광학식 마커와 적외선 카메라를 활용해 사람·동물의 동작을 3D 공간상에 기록하는 모션 캡처시스템과 획득한 동작 데이터를 임의의 3D 캐릭터에 입히는 실시간 리타게팅이다. 관람객들은 이밖에 문화기술대학원이 세계 최초로 자체개발에 성공한 미래형 상영기술인 스크린X와 증강현실 기반의 유적지 스마트 투어시스템 등을 전시하고 체험할 수 있어 융·복합화 연구중심의 과학기술 발전추세를 한눈에 느낄 수 있다.
다양한 주제와 내용으로 꾸며진 특별강연 프로그램도 눈에 띤다. 전산학부 김주호 교수는‘인간 컴퓨터 상호작용(HCI: Human Computer Interaction)’을 주제로 HCI 분야에 대한 소개와 집단지성으로 복잡한 문제를 풀어가는 크라우딩 기법을 소개할 예정이다. 산업및시스템공학과 이태식 교수와 문일철 교수는 각각 ‘세상 속 산업공학’과 ‘인공지능과 산업공학’을 주제로 일반인의 눈높이에 맞춰 산업공학 개론을 들려준다. 또 수리과학과는 ‘수학과 생물학의 아름다운 만남’이라는 주제로 세상에서 존재하는 가장 복잡한 시스템인 생명현상을 이해하는데 최근 수학이 활발히 사용되는 추이를 반영해 소위 생물학의 6번째 혁명이라 불리는 ‘수리 생물학’에 관해 소개와 함께 고등학교에서 배우는 미·적분을 이용해서 다양한 생명현상과 관련한 퍼즐을 풀어보는 시간을 갖는다.
이밖에 학교 홍보관에서 열리는 댄싱로봇 공연을 비롯해 KI빌딩 1층 로비에 설치된 Dr.M 쇼룸에서는 모바일 헬스케어 기술과 이를 융합한 가상의 미래 스마트 홈·병원을 체험할 수 있다. KI빌딩 3층에서는 1인 가구기반의 미래형 주거(스마트 홈) 공간상의 증강현실 서비스 제공 응용시나리오를 시연하는 등 다양하고 풍부한 볼거리가 준비돼 있어 관람객들은 과학기술에 대한 흥미와 감동을 현장에서 보다 생생하게 느낄 수 있다.
김종환 공과대학장은 “OPEN KAIST는 국민들이 실제 연구가 이뤄지는 KAIST의 연구현장을 직접 보고 체험할 수 있는 유일한 기회”라며 “KAIST는 앞으로 인류사회 발전에 기여하는 연구와 창의적·선도형 융합연구에 역량을 집중해 4차 산업혁명 시대를 선도하는 대학으로 국민들에게 더 가까이 다가설 것”이라고 강조했다.
한편 ‘OPEN KAIST 2017’ 행사기간 중 관람을 원하는 사람들은 별도의 신청절차 없이 당일 안내소에서 배포하는 안내책자를 이용해 본인이 희망하는 프로그램을 선택해서 자율적으로 관람할 수 있다. 행사에 대한 세부적인 프로그램과 일정은 관련 홈페이지(openkaist.ac.kr)를 통해 확인이 가능하다. 행사문의는 공과대학 교학팀(042-350-2491~4).
2017.10.23
조회수 28015
-
김갑진 교수, 초고속 동작 자기메모리 핵심 기술 개발 성공
〈 김 갑 진 교수 〉
우리 대학 물리학과 김갑진 교수와 고려대학교 이경진 교수 연구팀이 차세대 자구벽 기반 자기메모리의 속도를 획기적으로 향상시키는 기술을 개발했다.
이 연구는 물리·재료 분야 최고 권위의 학술지인 네이처 머티리얼즈(Nature Materials) 9월 25일자에 게재됐다.
현재 사용되는 메모리 소자인 D램(D-RAM)과 S램(S-RAM)은 속도는 빠르나 전원이 꺼지면 메모리가 사라지는 휘발성 특성이 있고, 플래시 메모리(Flash memory)는 비휘발성이나 속도가 느리고, 하드 디스크 드라이브(HDD)는 용량은 크나 전력 사용량이 크고 충격에 약하다는 한계가 있다.
기존 메모리의 단점을 해결하기 위해 ‘자구벽 기반 자기메모리’를 개발 중이다. 자구벽 메모리의 핵심 동작원리는 전류에 의한 자구벽 이동이다. 자성 나노선을 사용하여 비휘발성 특성을 확보하고, 기계적 회전을 없앰 으로써 전력사용량을 줄인 고집적․저전력의 차세대 메모리이다.
그러나 현재까지 연구결과, 자구벽 메모리의 동작 속도는 최대 수백 m/s로 속도에 한계가 있고, 이는 자구벽이 회전하면서 움직이는 ‘워커붕괴현상*’ 때문이라고 알려져 있다.
따라서 자구벽 메모리의 실용화를 위해 워커붕괴현상을 제거하여 동작 속도를 높일 수 있는 핵심기술 개발이 요구됐다.
자구벽 메모리 연구는 대부분 ‘강자성체’ 물질을 사용했으며, 강자성체의 경우 자구벽이 회전하는 워커붕괴현상을 피할 수 없다.
연구팀은 자기메모리 연구에 ‘페리자성체’인 GdFeCo를 사용한 결과 특정조건을 만족할 경우 워커붕괴현상을 없앨 수 있는 원리를 발견했고, 이를 이용해 자구벽의 이동 속도를 상온에서 2 km/s 이상까지 증가시키는데 성공했다.
자구벽 메모리는 고집적·저전력·비휘발성을 갖춘 메모리로서 이번 연구로 발견한 초고속 동작 특성이 추가된다면 하드디스크를 뛰어넘는 차세대 메모리가 될 것으로 기대된다.
김갑진 교수는 “이번 연구는 페리자성체의 각운동량이 0인 지점에서 나타나는 새로운 물리 현상을 발견했다는 점에서 의미가 크고, 향후 차세대 메모리 구현을 앞당길 수 있을 것으로 기대된다”고 밝혔다.
이 연구는 한국연구재단의 신진연구자지원사업, 선도연구센터지원사업(응집상 양자 결맞음 연구센터)과 DGIST 위탁연구(바이오자성 글로벌 연구센터) 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 페리자성체를 이용한 자구벽 메모리 소자의 개념도
그림2. 자구벽 속도 측정 소자의 개략도 및 실험 결과
2017.10.20
조회수 16863
-
제7회 정문술과학저널리즘 대상 시상식 무기 연기
당초 21일 오전 11시 서울 도곡캠퍼스에서 개최에정이던 제7회 정문술과학저널리즘 대상 시상식이 이행사 주최/주관부서인 문술미래전략대학원 과학저널리즘프로그램의 사정으로 무기 연기됐다.
2017.10.20
조회수 8633
-
이대길 교수, 제20회 국제복합재료구조학회( ICCS20) 특별공로상 수상
〈 이 대 길 교수 〉
우리 대학 기계항공공학부 이대길 명예교수가 제 20회 국제복합재료 구조학회(ICCS20 : 20th International Conference on Composite Structures)에서 특별 공로상을 수상했다.
매년 열리는 ICCS는 복합재료의 실용성을 강조하는 복합재료응용 분야의 최대학술대회로 올해는 9월 4일부터 7일 까지 프랑스 파리의 국립 공예원( CNAM : Conservatoire National des Arts et Métiers)에서 개최됐다.
올해는 45개 국가에서 650여 편의 논문이 발표됐고 이대길 교수는 논문 발표 실적, 대학원생 참여도, 논문심사 공헌도를 인정받아 특별 공로상을 수상했다.
이대길 교수는 ICCS7(1993년)부터 ICCS20까지 참가했고 ICCS7 및 ICCS8에서 최우수 논문상을 수상한 경력이 있다.
이 교수는 이번 학회에서 수상 기념 초청강연 (Light weight carbon composite Proton Exchange Membrane Fuel Cells)을 실시했다.
이 교수는 “학회에 발표된 논문과 관련 특허를 기반으로 우리 연구실 출신이 창업한 스탠다드 에너지(Standard Energy)의 발명품인 VRFB(Vanadium Redox Flow Battery-ESS)의 성능혁신 및 이를 통한 인류의 에너지 문제의 해결에 일조하기 위해 노력하겠다”고 말했다.
2017.10.18
조회수 14946
-
세계경제포럼과 제4차 산업혁명 라운드테이블 회의 10월 13일 공동 개최
우리대학은 오는 10월 13일 오전 9시부터 서울 소공동 롯데호텔에서 세계경제포럼(World Economic Forum, 이하 WEF)과 공동으로 ‘제4차 산업혁명의 핵심: 대한민국의 일자리와 포용적 성장의 전망’이란 주제로 심층 토론을 하는 4차 산업혁명 라운드테이블 회의를 개최할 예정이다.
이날 행사에는 청와대 문미옥 과학기술보좌관, 국회 4차산업혁명포럼 송희경 공동대표(자유한국당·국회의원)를 비롯해 과학기술정보통신부, 중소기업벤처부 외에 최근 출범한 4차 산업혁명위원회 등 정부의 4차 산업혁명 관련 주요 부처 인사가 참석한다. 또 권선택 대전광역시장, 김명자 한국과학기술단체총연합회장, 이영 前 여성벤처협회장 등 지자체 및 과학기술 유관단체장과 현대기아차그룹·삼성·GS·KT 등 국내 주요그룹 임원 등 경제인, 그리고 참여연대·변화를꿈꾸는과학기술인네트워크(ESC)·여시재 등 시민사회 인사 80여명이 참석할 계획이다.
이번 라운드테이블 회의는 4차 산업혁명과 관련해 WEF가 한국에서 직접 기획·주관하는 첫 행사로 KAIST와 공동으로 진행한다. 2016년 다보스포럼에서 클라우스 슈밥(Klaus Schwab) 의장이 4차 산업혁명이란 화두를 처음 제시한 이후 WEF는 지난 2년간 ‘사람 중심의 4차 산업혁명’·‘4차 산업혁명 시대 포용적 성장’·‘신기술과 일자리의 미래’ 등 최근 큰 이목을 끌고 있는 이슈들에 대한 의제설정과 담론을 주도해왔다. 이날 회의에서는 4차 산업혁명과 관련해 WEF가 지난 2년간 진행한 활동과 연구를 4차 산업혁명에 관한 사회적 관심과 향후 성공 가능성이 가장 높은 한국에 소개하고 또 KAIST가 현재 각 지자체와 손잡고 추진 중인 ‘맞춤형 중소기업 4.0 프로젝트’를 주제로 중소기업 제조혁신을 통한 일자리 창출 등에 관해서 논의한다.
특히 4차 산업혁명 시대, 우리나라의 글로벌 리더 도약을 위해 정부, 산·학·연, 시민사회단체 등 다양한 혁신주체가 과학·기술(S&T)을 기반으로 하는 ‘더 나은’ 일자리 창출과 미래 혁신생태계 구축에 관해 실질적인 협업과 혁신전략을 모색하기 위한 자리로 마련했다.
클라우스 슈밥 WEF 의장은 올 6월 중국 다롄에서 열린 하계 다보스포럼에서 참석인사 중 대학총장으로는 유일하게 신성철 총장과 만난 자리에서 “여러 나라가 4차 산업혁명에 관한 다양한 프로젝트를 추진하고 있지만 ICT 강국이자 정부의 과학기술 지원이 강력한 한국이 여러 측면에서 4차 산업혁명의 성공적인 안착을 위한 기회요건을 갖춘 나라”라고 강조했다. 그는 이어 “KAIST가 한국의 4차 산업혁명을 선도함으로써 세계 최초로 성공사례를 만들면 전 세계에 한국이 4차 산업혁명의 롤 모델 국가로 자리매김할 수 있을 것”이라고 조언한 바 있다.
이날 행사를 위해 WEF 측에서는 무라트 손메즈(Murat Sonmez) 4차 산업혁명센터 총괄대표를 비롯해 세바스찬 버컵(Sebastian Buckup) 다보스포럼 프로그램 총괄책임, 클라라 정(Clara Chung) 아태지역기업 총괄책임, 실비아 본 군텐(Silvia von Gunten) 북미기업 총괄국장, 이주옥 아태지역 전략국장, 김수연 아태지역 기업국장 등 주요 인사들이 13일 서울로 총집결한다. 특정국가에 이처럼 많은 WEF 제네바본부 주요 인사들이 동시에 참석하는 것은 극히 이례적인 경우로 그만큼 4차 산업혁명 전진기지로서의 한국의 중요성을 방증하는 것이다.
무라트 손메즈 WEF 이사 겸 4차산업혁명센터 총괄대표는 미국 버지니아공대에서 산업공학 석사학위를 취득한 후 실리콘밸리에 위치한 TIBCO사에서 20여 년간 부사장·국제총괄 등 핵심보직을 맡았고 2014년 WEF 이사로 참여해 최고사업총괄(CBO)를 거쳐 WEF의 가장 중요한 의제인 4차산업혁명센터의 총괄대표를 맡고 있다. 세바스찬 버컵 다보스포럼 프로그램 총괄책임은 2005년 뉴욕 UN본부 프로그램 개발국 근무를 시작으로 국제노동기구(ILO) 등에서 다양한 업무를 수행했고 2008년 WEF에 합류해서 현재 포럼 내 모든 프로그램 기획과 특히 다보스 연차총회 총괄기획을 담당하고 있다.
우리대학에서는 이장무 이사장과 신성철 총장을 비롯해 박희경 연구부총장, 이상엽 KI원장 겸 4차산업혁명지능정보센터 소장, 김소영 과학기술정책대학원장 겸 4차산업혁명지능정보센터 부소장, 이재형 국제협력처장 등 주요임원과 보직교수들이 참석한다.
두 기관은 이밖에 오전 10시30분부터 2층 크리스탈볼룸에서 KAIST 4차산업혁명지능정보센터(FIRIC, 소장 이상엽 교수)와 WEF 4차산업혁명센터(C4IR, 총괄대표 무라트 손메즈)간 글로벌 협력에 관한 양해각서(MOU)를 체결한다. 우리대학은 이날 체결식이 향후 대한민국이 4차 산업혁명 글로벌 선도주자로 부상하기 위한 교두보를 확보하는 계기가 될 것으로 기대하고 있다.
한편 이날 열리는 회의에서 심층 분과토론은 보다 생산적인 논의를 위해 토론내용은 자유롭게 공유하되 발언자의 익명성을 보장하는 채텀하우스 룰을 적용할 예정이므로 분과토론 후 다시 모여 요약내용을 공유하게 된다.
다만 분과토론이 진행 중인 오전 11시30분부터 2층 크리스탈볼룸에서 신성철 총장과 무라트 손메즈 WEF 4차산업혁명센터 총괄대표의 공동 기자회견이 마련돼 있다. 두 사람은 공동 기자회견을 통해 WEF와 KAIST의 이번 라운드테이블 개최배경과 의의 및 패널토의 결과 등에 관해 소개할 방침이다.
WEF는 정치ㆍ경제ㆍ사회ㆍ문화 각 분야의 글로벌 리더들이 모여 세계경제와 미래에 관해 토의하고 연구하는 세계 최고 권위의 민간회의 단체로 1971년 1월 독일 출신 제네바대학 경영학 교수인 클라우스 슈밥(Klaus Schwab) 現 의장이 주도해 설립했다. 1973년부터 참석대상을 전 세계로 확장했고 1974년부터 정치인을 초청하기 시작한 이후 1976년 회원기준을 세계 1,000개 선도 기업으로 확대하는 한편 1987년 WEF로 명칭을 변경한 이후 국제사회에서 세계 공공의 이익증진을 위한 기업가정신과 비전 및 전략개발에 앞장서고 있다.
경제발전 없이 사회발전은 불가능하고 사회발전 없이는 경제발전이 지속되지 못한다는 원칙으로 운영되며, WEF는 국가수반, 글로벌 기업 CEO, 노벨상 수상자 등 선도과학자, 시민단체 대표 등 약 2,500여명이 참여하는 연차총회를 매년 1~2월 스위스 다보스에서 개최하기 때문에 일명 ‘다보스포럼’이라고도 불린다.
특히 올해는 40여 개국 국가정상이 참여한 가운데 중국 최고 지도자로서는 시진핑 국가주석이 처음 참석해 WEF의 국제·사회적인 위상을 여실히 보여줬다. WEF는 다보스 연차총회 외에도 지역별·산업별 회의를 운영함으로써 세계무역기구(WTO)나 선진국 정상회담(G7)에도 막대한 영향력을 갖고 것으로 정평이 나 있다.
2017.09.28
조회수 19813
-
공승현 교수, 실내 극미약 GNSS신호 초고속 감지기술 개발
〈 김태선 연구원, 공승현 교수 〉
우리 대학 조천식녹색교통대학원 공승현 교수 연구팀이 범지구 위성항법 시스템인 GNSS(Global navigation Satellite System)를 실내에서도 사용할 수 있는 극미약 GNSS 신호 초고속 탐지기술을 개발했다.
연구팀의 기술을 활용하면 전 세계 어디서든 실내외 상관없이 GNSS 신호만으로 위치를 파악할 수 있기 때문에 대체기술 혹은 별도 장치가 필요하지 않아 활용도가 높을 것으로 기대된다.
이번 연구 성과는 국제 학술지 ‘IEEE 시그널 프로세싱 매거진(IEEE SPM)’ 9월호에 게재됐다.
대중에 가장 많이 알려진 GPS는 1970년대 美 국방부가 개발한 미국 기반의 위성항법장치이다. 이러한 시스템은 미국 뿐 아니라 러시아의 GLONASS, 유럽의 GALILEO, 중국의 COMPASS 등 여러 가지가 존재하는데 GNSS는 이 모든 기술들을 포함하는 시스템이다.
기존의 GNSS는 2만km 상공에서 지구 전역으로 신호를 방사하기 때문에 지상의 작은 안테나가 수신하는 신호는 매우 미약하다. 특히 건물 벽을 투과해 실내로 침투하는 GNSS는 외부에서 수신하는 신호의 세기보다 1천 배 이상 감소된 극미약 신호가 된다.
이러한 극미약 GNSS 신호를 탐지하기 위해 기존의 주파수 영역 상관기법을 사용하면 계산량이 1백만 배 이상 증가하게 되고 신호탐지를 위한 계산 시간도 폭발적으로 증가한다. 위와 같은 문제로 인해 지난 20여 년 간 GNSS 신호를 이용한 실내 측정 기술은 거의 불가능한 것으로 알려졌다.
연구팀은 문제 해결을 위해 실내 극미약 GNSS 신호의 탐지 시간을 획기적으로 줄일 수 있는 ‘합성기반 주파수 가설 탐지 기술 SDHT(Synthesized Doppler frequency hypothesis Testing)’를 개발했다.
일반적으로 GNSS 신호를 탐지하는 작업은 GNSS 신호의 코드 위상과 도플러 주파수를 정확히 알아내는 과정이다. 그런데 기존 방식의 알고리즘은 도플러 주파수의 가설 수를 2만 개 이상 검증을 해야 한다. 결국 소요 시간이 기하급수적으로 늘어난다.
반면 연구팀이 개발한 알고리즘은 가까운 도플러 주파수 가설에 따라 수행된 위상동기식 상관 결과를 이용해 우회적으로 검증하는 기술이다. 따라서 20여 개의 가설만 기존 방식으로 검증하고, 나머지 19980개의 가설은 단순한 산술연산만으로 검증을 수행하면 모든 작업을 완료할 수 있다.
결과적으로 SDHT는 기존 기술보다 1천 여배 적은 계산량, 800배 빠른 속도로 신호를 탐지할 수 있다. 약 15초의 소요시간으로 많은 건물 내의 극미약 GNSS 신호를 탐지할 수 있는 것이다.
연구팀은 추가 연구를 통해 미약한 GNSS 신호를 탐지하는 기술을 더욱 강화하고 실내 전파 난반사에 강한 위치 측정 기술을 개발하면 거의 모든 건물 내에서 수초 이내에 GNSS만을 이용한 실내 GNSS 단독 측정이 가능할 것으로 예상했다.
공 교수는 “기술 개발을 통해 전 세계적으로 실내 GNSS 측위 기술을 선도하게 됐다”며 “향후 실내 GNSS 시스템을 상용화하고 새로운 시장을 창출할 수 있을 것으로 기대한다”고 말했다.
연구팀은 국내 특허 등록 및 해외 출원 중이며 KAIST 창업원의 지원을 통해 기술사업화를 추진하고 있다.
□ 그림 설명
그림1. SDHT 기술을 이용한 GPS 실내 측위 시스템의 측위 결과
2017.09.28
조회수 16100