

한국과학기술원 NCS 기반 직무기술서 <연수연구원-기계>

	연수연구원		대분류	중분류	소분류	세분류			
채용분야	(Post Doc)/ 기계	분류체계	정보통신	정보기술	스마트물류 스마트팩토리	스마트물류 스마트팩토리			
설립이념	- 깊이 있 - 국가 정	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원							
KAIST 주요사업	○ 연구: 인후○ 국제화: †	○ 교육: 과학기술 글로벌 인재 양성 ○ 연구: 인류 난제 해결을 위한 연구 ○ 국제화: 글로벌 리더십 역량 강화 ○ 창업: 창업혁신 생태계 구축 및 발전							
성장 동력	○ Mission: ○ QAIST: 참	 ○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring 							
담당 업무	○ 디지털트	○ 디지털트윈, 물류반송 시스템 및 공학 교육 관련 연구							
직무수행 내용	방법론 7 ○ (물류반송 물류 자동	○ (디지털트윈 분야) 산업공학 혹은 관련 공학 전공자 - Discrete event 기반 시뮬레이션 모델 및 방법론 개발 관련 연구 ○ (물류반송 시스템 분야) 기계/전기전자/전산/컴퓨터공학 전공자 - AMR 및 AGV시스템 개발 및 물류 자동화 로봇의 이상징후감시 IoT 시스템 개발 관련 연구 ○ (공학교육) 공학 교육 전공자 혹은 교육전문가 - 공학교육 효과도 분석 및 공학 교육 커리큘럼 기비나							
필요지식	○ 기계제어	or 최적화	알고리즘 개발 or 3	강화학습 및 AI관련	지식				
필요기술	O Python,	Matlab, Ja	VA 등 프로그래밍	기술					
직무수행태도			! 연구자세, 객관적인 공유, 실행을 위해	인 판단 및 논리적인 협력하는 자세	분석 태도				
직업기초능력	○ 문제해결 직업윤리	•	노통능력, 수리능력,	자기개발능력, 정보성	등력, 기술능력, 조직	이해능력,			
참고사이트	www.ncs.go	o.kr, www.ka	aist.ac.kr						

한국과학기술원 NCS 기반 직무기술서 <연수연구원-생명과학>

			대분류	중분류	소분류	세분류				
채용분야	연수연구원 (Post Doc)	분류체계	신경생물학	신경생물학	식후 영양감지	장 및 뇌내 영양감지				
	/생명과학				장-뇌간 신경회로	장신경세포				
설립이념	- 깊이 있 - 국가 정	 ○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원 								
KAIST 주요사업	○ 연구: 인·○ 국제화: ·	 ○ 교육: 과학기술 글로벌 인재 양성 ○ 연구: 인류 난제 해결을 위한 연구 ○ 국제화: 글로벌 리더십 역량 강화 ○ 창업: 창업혁신 생태계 구축 및 발전 								
성장 동력	○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring									
담당 업무	Enteric neurons, Gut-Brain axis, Gut imaging 관련 Biomedical scientist or engineer									
직무수행 내용	Enteric neu	ırons, Gut-E	Brain axis, Gut imag	ging 관련 연구 수항	!					
필요지식	○ 유전 및 ○ Nutrient		echanism 에 대한 (이해						
필요기술	Enteric neu	ırons, Gut-E	Brain axis, Gut imag	ging						
직무수행태도	○ 성실한 고 ○ 책임감 있		! 연구 윤리 준수 인 태도							
직업기초능력	○ 문제해결	○ 의사소통능력 ○ 문제해결능력 ○ 직업윤리								
참고사이트	www.ncs.go	o.kr, www.ka	aist.ac.kr							

한국과학기술원 NCS 기반 직무기술서 <연수연구원-문화기술연구소>

			대분류	중분류	소분류	세분류			
			01. 사업관리	01. 사업관리	01. 프로젝트관리	02. 프로젝트관리			
채용분야	연수연구원 (Post Doc)/ 문화기술 연구소	분류체계	20. 정보통신	01. 정보기술	01.정보기술전략계획02. 정보기술개발	05. 빅데이터분석 04. 데이터 아키텍처 설계 01.			
					04. 정보기술관리	UT프로젝트관리			
설립이념	- 깊이 있 - 국가 정	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원							
KAIST 주요사업	○ 연구: 인분○ 국제화: ਜ਼ਿ	○ 교육: 과학기술 글로벌 인재 양성 ○ 연구: 인류 난제 해결을 위한 연구 ○ 국제화: 글로벌 리더십 역량 강화 ○ 창업: 창업혁신 생태계 구축 및 발전							
성장 동력	○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring								
담당 업무		○ 포스트 AI 시대 법과 발전 이해를 위한 복잡계 네트워크 과학 기반 법령정보 분석 연구과제 수행 및 논문 작성							
직무수행 내용	및 논문 작성 ○ 법률 간 진행 ○ 법령정보	인용 관계를 와 그 인용	이용해 복잡계 네!	트워크를 만들고, 그	하 기반 법령정보 (구조적 특성을 분석 이터베이스 설계·구	석하는 학술 연구			
필요지식			•	학, 빅데이터, 전산학 구를 경험해 본 연구	학 등)에 관한 지식 자 우대				
필요기술	○ 영문 논등	문 작성 능력	로그래밍/코딩 능력 : 사용 경험이 있는	경우 우대					
직무수행태도	│ │ ○ 주 1회의 │	미팅에 참여	겨하여 연구 진행상: 	황을 지속적으로 공	ਜ ਜ				
직업기초능력	○ 수리능력 ○ 기술능력								
참고사이트	www.ncs.go	o.kr, www.ka	nist.ac.kr						

한국과학기술원 NCS 기반 직무기술서 <위촉연구원-재료>

			대분류	중분류	소분류	세분류				
	시간제			02.전자기기일반	01.전자부품기획·생산	01.전자부품생산				
채용분야	위촉연구원/ 재료	분류체계	19.전기·전자		06. 반도체 개발	02.반도체제조				
			19.07 1.07	03.전자기기개발	00. 단포제 계절	04.반도체재료				
					07. 디스플레이 개발	03.디스플레이장비부품개발				
설립이념	- 깊이 있 - 국가 정	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원								
KAIST 주요사업	○ 연구: 인류○ 국제화: 급	○ 교육: 과학기술 글로벌 인재 양성 ○ 연구: 인류 난제 해결을 위한 연구 ○ 국제화: 글로벌 리더십 역량 강화 ○ 창업: 창업혁신 생태계 구축 및 발전								
성장 동력	○ Mission: ○ QAIST: 참	 ○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring 								
담당 업무	○ 포토리소	○ 액체금속 재료 분석 및 필름화 ○ 포토리소그래피 공정을 통해 대면적 미세 패터닝 ○ 스트레처블 트랜지스터 성능 평가								
직무수행 내용	○ 액체금속○ 미세 전=	을 이용한 [구 패터닝에 네즈 전극 파	기세 사이즈 압력/인장 선		용자에 부착한 뒤 행동	동 분류				
필요지식	○ 포토리소 ○ 액체금속	,	E체 8대 공정)						
필요기술	○ Mask Ali	_	· 패터닝 sonicator를 ·	통한 분산						
직무수행태도]험에 성실함(] 변화에 취약		·므로 분석적인 태도?	가 요구됨				
직업기초능력			naterials)에 디 기초 지식이	배한 전반적인 지식 요구됨	이 요구됨					
참고사이트	www.ncs.gc	o.kr, www.ka	aist.ac.kr							

한국과학기술원 NCS 기반 직무기술서 <위촉연구원 - 재료_분석>

			대분류	중분류	소분류	세분류				
채용분야	시간제 위촉연구원/ 재료_분석	분류체계	재료	금속재료	금속엔지니어링	재료시험				
설립이념	- 깊이 있 - 국가 정	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원								
KAIST 주요사업	 ○ 교육: 과학기술 글로벌 인재 양성 ○ 연구: 인류 난제 해결을 위한 연구 ○ 국제화: 글로벌 리더십 역량 강화 ○ 창업: 창업혁신 생태계 구축 및 발전 									
성장 동력	 ○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring 									
담당 업무	○ 소형모듈원전 압력용기강소재의 전자빔용접부 특성평가○ 후열처리에 전자빔용접부의 미세조직 변화분석○ 스테인리스합금 및 용접부의 부식특성평가									
직무수행 내용	○ 후열처리	에 따른 전기	다빔용접부 미세조직	네조직 분석 및 기계 변화를 전자현미경: 리스강 용접부의 부	을 이용하여 분석	:행				
필요지식	· ·	•	·	성 메커니즘에 대한 부식 실험에 대한 7						
필요기술			•	분석, 물성평가에 대한 부식균열평가에 대한						
직무수행태도		○ 영향력이 큰 연구를 수행할 동기, 지속적인 자기개발에 대한 의지, 연구 가치와 윤리 준수에 대한 의지, 실험실 안전수칙 준수								
직업기초능력	○ 대인관계	능력, 문제하	배결능력, 의사소통능	·력, 수리능력						
참고사이트	www.ncs.go	o.kr, www.ka	aist.ac.kr							

한국과학기술원 NCS 기반 직무기술서 <위촉연구원-재료_실험>

			대분류	중분류	소분류	세분류				
채용분야	시간제 위촉연구원/ 재료_실험	분류체계	재료	금속재료	금속엔지니어링	재료시험 재료 조직평가				
설립이념	- 깊이 있 - 국가 정	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원								
KAIST 주요사업	○ 연구: 인후○ 국제화: †	 ○ 교육: 과학기술 글로벌 인재 양성 ○ 연구: 인류 난제 해결을 위한 연구 ○ 국제화: 글로벌 리더십 역량 강화 ○ 창업: 창업혁신 생태계 구축 및 발전 								
성장 동력	 ○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring 									
담당 업무	○ 고온고압 수화학 루프 시험장비 유지보수 ○ 수화학 루프 시험장비를 이용한 금속소재의 부식 및 부식균열 시험									
직무수행 내용	○ 저합금강	전자빔 용점	 험용 고온고압 수호 접부의 저주기 및 혼 열 진전 시험 수행	h학 루프 시험장비으 ŀ경피로 시험 수행	유지보수					
필요지식			뜨 시험장비의 운용(균열 시험에 대한 0							
필요기술			뜨 시험장비의 운용(식균열시험에 대한							
직무수행태도		○ 영향력이 큰 연구를 수행할 동기, 지속적인 자기개발에 대한 의지, 연구 가치와 윤리 준수에 대한 의지, 실험실 안전수칙 준수								
직업기초능력	○ 대인관계	능력, 문제히	H결능력, 의사소통능	·력, 수리능력						
참고사이트	www.ncs.go	o.kr, www.ka	aist.ac.kr							

한국과학기술원 NCS 기반 직무기술서 <위촉연구원 - 전기>

	시간제		대분류	중분류	소분류	세분류			
채용분야	위촉연구원/ 전기	분류체계	*19. 전기전자	*03. 전자기기개발	*06. 반도체개발	*01. 반도체개발			
설립이념	- 깊이 있 - 국가 정	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원							
KAIST 주요사업	○ 연구: 인물○ 국제화: 급	○ 교육: 과학기술 글로벌 인재 양성 ○ 연구: 인류 난제 해결을 위한 연구 ○ 국제화: 글로벌 리더십 역량 강화 ○ 창업: 창업혁신 생태계 구축 및 발전							
성장 동력	○ Mission: ○ QAIST: 참	 ○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring 							
담당 업무	○ 아날로그 ○ 연구 시자	 ○ 바이오메디컬 저전력 집적회로 설계 ○ 아날로그/디지털 회로설계 및 측정 ○ 연구 시제품 제작 ○ 논문 작성 및 과제 제안 							
직무수행 내용	○ 연구 과저 ○ 국내 및	 ○ 연구 수행 및 논문 작성 ○ 연구 과제 관리 ○ 국내 및 국제학회 참가 및 발표 ○ 타 연구실과의 공동연구 및 기술교류 수행 							
필요지식	○ 디지털 5	로직 구현 지	디지털 회로 설계 ! 식 (frontend to ba 분야 전반 지식	및 측정 지식, Digita ckend)	ıl Signal Processing				
필요기술		터 등을 포함	지털 회로설계 및 측 함한 툴 관련 기술 작성 기술	정 기술					
직무수행태도	○ 새로운 분	○ 열정적이고 능동적인 탐구자세○ 새로운 분야에 대한 문제 해결 능력○ 성실성 및 대인관계							
직업기초능력	○ 회로설계	○ 문제해결능력, 직업윤리, 조직이해능력 ○ 회로설계/측정, 연구시제품 제작 전반에 관한 경험 ○ 해당분야 학사학위 소지자							
참고사이트	www.ncs.go	o.kr, www.ka	aist.ac.kr						

한국과학기술원 NCS 기반 직무기술서 <위촉연구원 - 항공우주>

	시간제		대분류	중분류	소분류	세분류			
채용분야		분류체계	4 F 7 I 7 H	ᅇᅘ고기계자	04 하고기서게	01.항공기기체설계			
			15.기계	09.항공기제작	01.항공기설계	03.항공기전자전자장비설계			
설립이념	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원								
KAIST 주요사업	ResearchCooperat	○ Education: 창의적 인재 육성, 융합교육 강화, 글로벌 과학기술 리더 양성, 교육인적 역량 강화 ○ Research: 우수 연구 과제 발굴 지원, 특성화된 연구인력 확보, 창업문화 선진화, 고부가가치 지적재산권 창출 및 기술이전/사업화 촉진, 선도적 대형과제 발굴 ○ Cooperation: 국제적 수준의 근무 환경 조성, 글로벌 리더십을 위한 다양한 협력 ○ Administration: 외국인 학생·교원 대상 행정·기술 서비스 제공(Bi-lingual Campus 운영 지원)							
성장 동력	- 지식창: (Hub fo - 세계적 ○ 5대 혁신	○ Vision: 글로벌 가치창출 세계 선도대학(Global Value-Creative World-Leading University) - 지식창조형 글로벌 융합인재 양성 허브 (Hub for Fostering Knowledge Creation and Global Convergence Talents) - 세계적 신지식 신기술 창출 진원지(Center for the World-Leading New Knowledge and Technology) ○ 5대 혁신: 교육혁신, 연구혁신, 기술사업화혁신, 국제화혁신, 미래전략혁신 ○ 3C Leadership: Change(변화), Communication(소통), Care(돌봄)							
담당 업무					최적화 기법 연구 문모델 추가 및 개선				
직무수행 내용	○ 초저고도 ○ 비행 제0			•	n the Loop Simulat	ion) 시험 수행			
필요지식	○ 인공위성	궤도 및 지	·세 역학, 추	정 및 기초 제어	이론				
필요기술	○ C, C++,	C#, MATLA	B, Python ±	프로그래밍 기술 등	<u>=</u>				
직무수행태도	○ 다각적인 ○ 정보 수집				이해에 대한 습득	의지			
직업기초능력	○ 대한민국 ○ 항공우주 ○ 문제해결	공학 전공 🤄	학사학위 소개	지자					
참고사이트	www.ncs.go	o.kr, www.ka	aist.ac.kr						

한국과학기술원 NCS 기반 직무기술서 <위촉연구원 – 항공우주_LICS연구실>

			대분류	중분류	소분류	세분류			
채용분야	시간제 위촉연구원/ 항공우주_ LICS연구실	분류체계	20. 정보통신	01. 정보기술	02. 정보기술개발	02. 응용SW엔지니어링			
설립이념	- 깊이 있- - 국가 정?	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원							
KAIST 주요사업	○ 연구: 인류○ 국제화: 글	○ 교육: 과학기술 글로벌 인재 양성 ○ 연구: 인류 난제 해결을 위한 연구 ○ 국제화: 글로벌 리더십 역량 강화 ○ 창업: 창업혁신 생태계 구축 및 발전							
성장 동력	○ Mission: 입 ○ QAIST: 창	 ○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring 							
담당 업무	○ 과제 및 인	○ 과제 및 연구 수행							
직무수행 내용	○ 시험모델	○ 호버바이크 장애물 회피 및 인식 ○ 시험모델 제작 및 알고리즘 구현 ○ 시뮬레이션 및 실험을 통한 알고리즘 검증							
필요지식	○ 제어 기법 ○ 인공지능								
필요기술	MatlabROSPython								
직무수행태도		○ 분석적 자세○ 객관적 자세							
직업기초능력	○ 수리능력 ○ 문제해결	○ 수리능력 ○ 문제해결 능력							
참고사이트	www.ncs.go.	kr, www.ka	aist.ac.kr						

한국과학기술원 NCS 기반 직무기술서 <위촉연구원_ 금속 재료>

			대분류	중분류	소분류	세분류				
채용분야	시간제 위촉연구원/ 금속 재료	분류체계	재료	금속재료	금속엔지니어링	재료시험				
설립이념	- 깊이 있 - 국가 정	○ 한국과학기술원법 - 깊이 있는 이론과 실제적인 응용력으로 국가 산업 발전에 기여할 고급 과학기술 인재 양성 - 국가 정책으로 추진하는 중장기 연구 개발과 국가 과학기술 저력 배양을 위한 기초응용 연구 수행 - 각 분야 연구 기관 및 산업계와 연계한 연구 지원								
KAIST 주요사업	○ 연구: 인후○ 국제화: †	○ 교육: 과학기술 글로벌 인재 양성○ 연구: 인류 난제 해결을 위한 연구○ 국제화: 글로벌 리더십 역량 강화○ 창업: 창업혁신 생태계 구축 및 발전								
성장 동력	 ○ Vision : 국가와 인류, 지구를 위한 독특한 빛깔의 세계 10위권 대학 ○ Mission: 인류의 행복과 번영을 실현하는 과학기술혁신대학 ○ QAIST: 창의인재, Post AI 융복합 연구, 글로벌 인재, 기술가치창출, 소통의 신뢰 ○ 3C Spirit : Challenge, Creativity, Caring 									
담당 업무	○ 고엔트로	○ 3차원 탄소 구조체의 기계적 물성 연구 ○ 고엔트로피 합금이 코팅된 3차원 탄소 구조체 연구 ○ 고엔트로피 합금의 코팅 조건에 따른 물성 평가 및 최적화								
직무수행 내용	○ 탄소 구 ²	E체와 고엔 <u>!</u>	│ 압축 강도 평가 트로피 합금의 계면 코팅이 탄소 구조체!	분석 의 강도와 연신율에	미치는 영향 분석					
필요지식			변형 메커니즘에 대 도금의 원리에 대							
필요기술	○ 3차원 구 ○ 무전해 5	–	· 시험을 통한 기계· 도금 기술	적 물성 분석 기술						
직무수행태도		○ 구성원 간 주도적인 역할 담당 및 서로 간 활발한 피드백을 통한 시행착오 최소화 ○ 관련 분야의 전문가와 적극적인 디스커션을 통한 문제의 빠른 해결 및 보완책 제시								
직업기초능력	○ 대인관계	대인관계능력, 직업윤리, 문제해결능력, 의사소통능력, 조직이해능력, 자원관리능력								
참고사이트	www.ncs.go	o.kr, www.ka	aist.ac.kr							