[첨부 3] 차세대 소형위성 환경시험 요구조건

# 차세대 소형위성 Component 환경시험 요구조건

2014년 3월

KAIST 인공위성연구센터

| 목 차 |  |
|-----|--|
|-----|--|

| <b>1</b> 개요                                     |    |
|-------------------------------------------------|----|
| 1.1 환경시험 업무범위                                   | 3  |
| 1.2 환경시험 내용                                     | 3  |
| 2 참고문헌                                          | 4  |
| 2.1 NEXTSat 규격문서                                | 4  |
| 2.2 기타 개발참고 문서                                  | 4  |
| 3 환경시험 요구사항                                     | 5  |
| 3.1 우주 및 발사환경 설계                                | 5  |
| 3.1.1 온도범위                                      | 5  |
| 3.1.2 Random Vibrations and Shock 요구사항          | 6  |
| 3.1.2.1 Random Vibration                        | 6  |
| 3.1.2.4 Shock                                   |    |
| 3.1.3 Orbital Radiation Dose Levels             |    |
| 3.1.4 Non-destructive SEE (SEU, MBU, SES, SEFI) |    |
| 3.1.6 Micrometeoroids and Debris                | 11 |
| 3.2 환경시험 조건                                     | 15 |
| 3.2.1 Ambient Environment                       | 15 |
| 3.2.2 Test Condition Tolerances                 | 16 |
| 3.2.3 Functional Test                           |    |
| 3.2.4 시험결과 합격 및 불합격                             |    |
| 3.2.5 Test Data Package                         |    |
| 4 환경시험 항목                                       | 19 |
| 4.1 Thermal Vacuum                              | 20 |

# 1개요

본 문서는 차세대 소형위성의 본체 및 탑재체 각 component에 대한 환경시험 요구사항에 대하여 기술하였으며, 추후 발사체 선정, 운용궤도 및 세부설계가 진행됨에 따라 일부 내용이 변경될 수 있다.

#### 1.1 환경시험 업무범위

아래의 표는 러시아 Dnepr 발사체의 경우에 대한 발사체 요구사항을 보여주고 있으며, 추후 발사체가 선정되면 관련 세부 요구사항이 바뀔 수 있다.

| Item                           | Launch Vehicle |  |
|--------------------------------|----------------|--|
| Quasi-Static Loads in LV Axis: |                |  |
| . Axial                        | ± 10.8 g       |  |
| . Lateral                      | ± 3.4 g        |  |
| Random Vibration               | 5.2 Grms       |  |
| Shock, Maximum                 | 3,000 g        |  |
| Payload Frequency              |                |  |
| . Lateral, Min.                | 10 Hz          |  |
| . Longitudinal, Min.           | 20 Hz          |  |
|                                |                |  |

Table 1-1 발사체 요구사항 [TBD]

#### 1.2 환경시험 내용

차세대 소형위성의 본체 및 탑재체의 환경시험은 EQM과 FM으로 구분하여 수행하며, 세부적인 요구사항은 다음 각 절에서 기술한다.

# 2 참고문헌

차세대 소형위성의 본체 및 탑재체 각 component에 대한 환경시험 수행 참고문헌은 다음과 같으며, 추후 개발과정에서 설계를 통하여 발행 할 예정이다.

# 2.1 NEXTSat 규격문서

| Document No.   | Title                                |
|----------------|--------------------------------------|
| NS1-SP-000-000 | NEXTSat Spacecraft Bus Specification |
| NS1-SP-000-000 | NEXTSat Payload Specification        |

## 2.2 기타 개발참고 문서

| Document No.  | Title                                                         |
|---------------|---------------------------------------------------------------|
| MIL-STD-1540B | Test Requirements for Space Vehicles                          |
| MIL-STD-1540C | Test Requirements for Launch, Upper-Stage, and Space Vehicles |
| GEVS-SE Rev A | General Environmental Verification Specification              |
| PSS-01-801    | Test Requirements Specification for Space Equipment           |

3 환경시험 요구사항

3.1 우주 및 발사환경 설계

#### 3.1.1 온도범위

차세대 소형위성의 본체 및 탑재체 각 Component 에 대한 최저 및 최고 온도범위는 아래의 그림과 같으며, 추후 궤도환경 분석에 따라 일부 내용이 변경될 수 있다.



Component Thermal Design and Test Limits (A)

#### Notes :

(A) Limits apply to all units except for propulsion equipment and payload equipment

(B) Lower survival limit is 5 degrees C below EQM level or -30 degree C, whichever is lower

(C) Limits for components with their own cooling design, i.e., isolated from the spacecraft

(D) Margins for the battery units is  $\pm$  5 degrees C in lieu of  $\pm$  11 degrees C

Figure 3-1 Component에 대한 열 설계 및 시험 기준 레벨

# 3.1.2 Random Vibrations and Shock 요구사항

#### 3.1.2.1 Random Vibration

아래의 표는 차세대 소형위성의 본체 및 탑재체를 포함한 각 component에 대한 random vibration 시험 요구사항을 제시한다.

| Frequency (Hz) | Acceleration PSD (g <sup>2</sup> /Hz) |  |
|----------------|---------------------------------------|--|
| 20             | 0.013                                 |  |
| 50             | 0.08                                  |  |
| 800            | 0.08                                  |  |
| 2000           | 0.013                                 |  |
| Overall        | 10 g rms                              |  |

Table 3-1 Random vibration level for satellite equipment [TBD]



Figure 3-2 satellite components 에 대한 Random vibration level

차세대 소형위성의 위성 본체 및 탑재체 각 component에 대한 Random vibration design margin 및 test range requirements는 아래의 표와 같다.

Table 3-2 Component random vibration design and test requirements [TBD]

| Component Status   | Design Margin                | Test Range              |
|--------------------|------------------------------|-------------------------|
| Payload/Spacecraft |                              |                         |
| Existing Design    | 3 dB min. above limit levels | Limit levels            |
| Modified Design    | 3 dB min. above limit levels | 3 dB above limit levels |
| New Design         | 6 dB min. above limit levels | 3 dB above limit levels |

#### 3.1.3.2 Acoustic Vibration

차세대 소형위성의 위성 본체 및 탑재체 각 component에 대한 acoustic vibration environment는 아래의 표와 같다.

| Frequency (Hz) | SPL (dB) | Frequency (Hz) | SPL (dB) |
|----------------|----------|----------------|----------|
| 31             | 125      | 1000           | 129      |
| 63             | 132      | 2000           | 126      |
| 125            | 135      | 4000           | 121      |
| 250            | 136      | 8000           | 115      |
| 400            | 134      | 10000          | 113      |
| Overall SPL    |          |                |          |

Table 3-4. Acoustic vibration level for satellite equipment [TBD]



Figure 3-3. Satellite components에 대한 Acoustic vibration level

차세대 소형위성의 위성 본체 및 탑재체 각 component에 대한 acoustic vibration design margin과 test range requirements는 아래의 표와 같다.

Table 3-5. Component acoustic vibration design and test requirements [TBD]

| Component Status   | Design Margin                | Test Range              |
|--------------------|------------------------------|-------------------------|
| Payload/Spacecraft |                              |                         |
| Existing Design    | 3 dB min. above limit levels | Limit levels            |
| Modified Design    | 3 dB min. above limit levels | 3 dB above limit levels |
| New Design         | 6 dB min. above limit levels | 3 dB above limit levels |

#### 3.1.3.3 Sine Vibration

차세대 소형위성의 본체 및 탑재체에 대한 sine environment의 limit level은 아래 표와 같다.

| <b>–</b> (11.) | Acceleration (g)                                                            | Sweep                                                                                                                                              |
|----------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (Hz) | Acceptance Level                                                            | Rate                                                                                                                                               |
| 5 - 13         | 4.56 mm (0-peak)                                                            |                                                                                                                                                    |
| 60 - 80        | 6                                                                           |                                                                                                                                                    |
| 100            | 3                                                                           | 4 oct/min                                                                                                                                          |
| 5 - 20         | 3.72mm (0-peak)                                                             | 4 000/1111                                                                                                                                         |
| 20 - 50        | 6                                                                           | 1                                                                                                                                                  |
| 50 - 100       | 4                                                                           |                                                                                                                                                    |
|                | Frequency (Hz)<br>5 - 13<br>60 - 80<br>100<br>5 - 20<br>20 - 50<br>50 - 100 | Acceleration (g)   Frequency (Hz) Acceptance Level   5 - 13 4.56 mm (0-peak)   60 - 80 6   100 3   5 - 20 3.72mm (0-peak)   20 - 50 6   50 - 100 4 |

Table 3-6. Sine vibration level for satellite equipment [TBD]

차세대 소형위성의 본체 및 탑재체의 sine vibration design margin과 test range requirements은 아래의 표와 같다.

Table 3-7. Component sine vibration design and test requirements [TBD]

| Design Margin                | Test Range                                                                                                    |
|------------------------------|---------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                               |
| 3 dB min. above limit levels | Limit levels                                                                                                  |
| 3 dB min. above limit levels | 3 dB above limit levels                                                                                       |
| 6 dB min. above limit levels | 3 dB above limit levels                                                                                       |
|                              | Design Margin<br>3 dB min. above limit levels<br>3 dB min. above limit levels<br>6 dB min. above limit levels |

#### 3.1.2.4 Shock

차세대 소형위성의 본체 및 탑재체의 shock test level은 아래의 표와 같다.

| Description          | Frequency (Hz) | Acceleration (g's) |
|----------------------|----------------|--------------------|
|                      | 100            | 20                 |
| Satellite Components | 1500           | 2000               |
|                      | 10000          | 2000               |

Table 3-8 Shock response spectrum (Q = 10) [TBD]



Figure 3-4 Satellite components<sup>2</sup>| Shock response spectrum

차세대 소형위성의 본체 및 탑재체의 shock design margin requirements은 아래의 표와 같다.

| Component Status   | Design Margin                   |
|--------------------|---------------------------------|
| Payload/Spacecraft |                                 |
| Existing Design    | Limit levels                    |
| Modified Design    | 3 dB minimum above limit levels |
| New Design         | 6 dB minimum above limit levels |
|                    |                                 |

Table 3-9 Component shock design margins [TBD]

#### **3.1.3** Orbital Radiation Dose Levels

발사체의 선정과 임무궤도가 확정되지 않았으나, 저궤도 태양동기궤도와 임무수명을 고려하여 차세대 소형위성 본체 및 탑재체 components는 누적방사선량의 크기 20 krad(Si) [TBD]를 고려하여 설계하여야 한다.

#### 3.1.4 Non-destructive SEE (SEU, MBU, SES, SEFI)

발사 후 우주환경을 고려하여 추가적인 우주환경 시험을 요구할 수 있다. SEU, MBU, SES, SEFI 등 시험은 추후 개발 과정에서 협의를 통하여 반영 할 수 있다.

#### **3.1.5** Destructive SEE (SEL, SEB, SEGR)

발사 후 우주환경을 고려하여 추가적인 우주환경 시험을 요구할 수 있다. SEL, SEB, SEGR 등 시험은 추후 개발 과정에서 협의를 통하여 반영 할 수 있다.



Figure 3-5 알루미늄 두께에 따른 dose 량 (2 years)

| Table 3- | 10 | Radiation | dose | levels | during   | mission | life | time | (2 | years | ) |
|----------|----|-----------|------|--------|----------|---------|------|------|----|-------|---|
|          |    |           |      |        | <u> </u> |         |      |      |    | 2 .   |   |

| Shielding | Trapped   | Trapped   | Solar     | Gamma     | Total Dogo  |
|-----------|-----------|-----------|-----------|-----------|-------------|
| Thickness | Electron  | Proton    | Proton    | Photon    | I otal Dose |
| [mm Al]   | [rad(si)] | [rad(Si)] | [rad(Si)] | [rad(Si)] | [rau(51)]   |
| 1.00E-02  | 1.96E+06  | 8.01E+04  | 2.38E+05  | 1.14E+03  | 2.27E+06    |
| 1.00E-01  | 4.92E+05  | 7.75E+03  | 1.60E+04  | 6.14E+02  | 5.17E+05    |
| 1.00E+00  | 1.66E+04  | 1.20E+03  | 1.23E+03  | 6.10E+01  | 1.91E+04    |
| 2.00E+00  | 5.48E+03  | 8.47E+02  | 6.03E+02  | 3.20E+01  | 6.97E+03    |
| 3.00E+00  | 2.25E+03  | 7.16E+02  | 3.67E+02  | 2.15E+01  | 3.35E+03    |
| 4.00E+00  | 9.54E+02  | 6.45E+02  | 2.60E+02  | 1.65E+01  | 1.88E+03    |
| 5.00E+00  | 3.85E+02  | 6.00E+02  | 1.96E+02  | 1.31E+01  | 1.20E+03    |
| 6.00E+00  | 1.47E+02  | 5.62E+02  | 1.60E+02  | 1.10E+01  | 8.81E+02    |
| 7.00E+00  | 5.26E+01  | 5.33E+02  | 1.36E+02  | 9.49E+00  | 7.30E+02    |
| 8.00E+00  | 1.68E+01  | 5.13E+02  | 1.20E+02  | 8.32E+00  | 6.58E+02    |
| 9.00E+00  | 4.46E+00  | 4.81E+02  | 1.04E+02  | 7.49E+00  | 5.97E+02    |
| 1.00E+01  | 8.36E-01  | 4.67E+02  | 9.14E+01  | 6.84E+00  | 5.66E+02    |
| 2.00E+01  | 0.00E+00  | 3.39E+02  | 3.23E+01  | 3.99E+00  | 3.75E+02    |
| 3.00E+01  | 0.00E+00  | 2.63E+02  | 8.31E+00  | 2.89E+00  | 2.74E+02    |
| 4.00E+01  | 0.00E+00  | 2.11E+02  | 0.00E+00  | 2.22E+00  | 2.13E+02    |
| 5.00E+01  | 0.00E+00  | 1.77E+02  | 0.00E+00  | 1.85E+00  | 1.79E+02    |
| 1.00E+02  | 0.00E+00  | 6.97E+01  | 0.00E+00  | 6.05E-01  | 7.03E+01    |



Figure 3-6 Charged particle flux under 2 mm aluminum shielding

| LET (MeV.cm <sup>2</sup> /g) | Integi<br>(#.m <sup>-2</sup> | ral Flux<br><sup>2</sup> .s <sup>-1</sup> .sr <sup>-1</sup> ) | LET (MeV-cm <sup>2</sup> /g) | Integı<br>(#.m <sup>-2</sup> | ral Flux<br><sup>2</sup> .s <sup>-1</sup> .sr <sup>-1</sup> ) |
|------------------------------|------------------------------|---------------------------------------------------------------|------------------------------|------------------------------|---------------------------------------------------------------|
|                              | Worst Case                   | Best Case                                                     |                              | Worst Case                   | Best Case                                                     |
| 1.011E+01                    | 2.61E+07                     | 2.55E+04                                                      | 7.055E+02                    | 2.89E+04                     | 5.50E-01                                                      |
| 2.003E+01                    | 1.40E+07                     | 1.29E+04                                                      | 1.004E+03                    | 2.01E+04                     | 3.80E-01                                                      |
| 3.012E+01                    | 7.90E+06                     | 7.17E+03                                                      | 2.011E+03                    | 7.83E+03                     | 5.38E-02                                                      |
| 4.012E+01                    | 4.94E+06                     | 4.30E+03                                                      | 3.024E+03                    | 4.43E+03                     | 2.24E-02                                                      |
| 5.002E+01                    | 3.36E+06                     | 2.78E+03                                                      | 4.029E+03                    | 3.02E+03                     | 1.25E-02                                                      |
| 6.034E+01                    | 2.42E+06                     | 1.89E+03                                                      | 5.023E+03                    | 2.21E+03                     | 8.05E-03                                                      |
| 7.041E+01                    | 1.80E+06                     | 1.33E+03                                                      | 7.070E+03                    | 1.23E+03                     | 3.89E-03                                                      |
| 8.037E+01                    | 1.41E+06                     | 9.87E+02                                                      | 1.006E+04                    | 5.90E+02                     | 1.68E-03                                                      |
| 9.073E+01                    | 1.12E+06                     | 7.46E+02                                                      | 2.015E+04                    | 1.03E+02                     | 2.51E-04                                                      |
| 1.002E+02                    | 9.23E+05                     | 5.88E+02                                                      | 3.031E+04                    | 1.73E+00                     | 2.66E-06                                                      |
| 2.007E+02                    | 2.28E+05                     | 7.77E+01                                                      | 4.037E+04                    | 8.15E-02                     | 3.72E-08                                                      |
| 3.018E+02                    | 1.06E+05                     | 1.07E+01                                                      | 5.033E+04                    | 4.67E-02                     | 1.55E-08                                                      |
| 4.020E+02                    | 6.48E+04                     | 4.44E+00                                                      | 7.006E+04                    | 1.62E-02                     | 3.24E-09                                                      |
| 5.013E+02                    | 4.48E+04                     | 1.67E+00                                                      | 1.008E+05                    | 2.04E-04                     | 0.00E+00                                                      |

Table 3-11 Integral flux vs. LET under 2 mm aluminum shielding

#### **3.1.6** Micrometeoroids and Debris

우주환경에 노출되는 각 component는 아래의 debris 등을 고려하여 설계하여야 한다.







spectrum

Figure 3-8 Debris size integral flux spectrum

| Debris Mass | Integral Flux | Debris Mass | Integral Flux |
|-------------|---------------|-------------|---------------|
| (kg)        | $(\#/m^2/yr)$ | (kg)        | (#/m²/yr)     |
| 8.90E-16    | 9.29E+03      | 1.88E-05    | 5.43E-04      |
| 5.54E-15    | 7.81E+03      | 1.17E-04    | 1.70E-04      |
| 1.38E-14    | 6.82E+03      | 1.81E-03    | 3.67E-05      |
| 2.15E-13    | 4.84E+03      | 1.13E-02    | 1.65E-05      |
| 1.34E-12    | 2.07E+03      | 1.75E-01    | 7.24E-06      |
| 2.08E-11    | 5.12E+02      | 1.09E+00    | 4.14E-06      |
| 1.29E-10    | 2.42E+02      | 1.70E+01    | 1.98E-06      |
| 2.01E-09    | 5.06E+01      | 1.06E+02    | 1.18E-06      |
| 1.25E-08    | 2.77E+00      | 1.64E+03    | 7.69E-07      |
| 1.94E-07    | 5.08E-02      | 1.02E+04    | 1.89E-07      |
| 1.21E-06    | 5.58E-03      | 3.95E+05    | 0.00E+00      |

Table 3-12 Debris mass flux spectrum

Table 3-13 Debris size flux spectrum

| Debris Diameter | Integral Flux | Debris Diameter | Integral Flux |
|-----------------|---------------|-----------------|---------------|
| (m)             | (#/m²/yr)     | (m)             | (#/m²/yr)     |
| 1.00E-06        | 9.51E+03      | 1.00E-02        | 6.41E-05      |
| 5.01E-06        | 5.28E+03      | 5.01E-02        | 1.07E-05      |
| 2.00E-05        | 7.34E+02      | 1.00E-01        | 5.63E-06      |
| 5.01E-05        | 2.39E+02      | 5.01E-01        | 1.39E-06      |
| 1.00E-04        | 8.64E+01      | 1.00E+00        | 1.03E-06      |
| 5.01E-04        | 9.25E-02      | 5.01E+00        | 1.14E-07      |
| 1.00E-03        | 6.19E-03      | 6.31E+00        | 4.01E-09      |
| 5.01E-03        | 2.41E-04      | 7.94E+00        | 1.14E-09      |

### 3.2 환경시험 조건

#### **3.2.1** Ambient Environment

차세대 소형위성의 본체 및 탑재체 각 component의 환경시험은 아래의 온도 및 습도조건에서 시험을 수행한다.

- Temperature: (16 to 32)°C
- Relative Humidity: (20 to 70)%

### **3.2.2** Test Condition Tolerances

기타 환경시험 조건에서 언급되지 않은 시험은 아래의 오차범위를 반영하여 수행하도록 한다.

| Antenna Pattern Determination              | $\pm 2 \text{ dB}$                  |
|--------------------------------------------|-------------------------------------|
| Electromagnetic Compatibility              |                                     |
| Voltage Magnitude:                         | $\pm$ 5 % of the peak value         |
| Current Magnitude:                         | $\pm$ 5 % of the peak value         |
| RF Amplitudes:                             | $\pm 2 \text{ dB}$                  |
| Frequency:                                 | ± 2 %                               |
| Distance                                   | $\pm$ 5 % of specified distance, or |
|                                            | $\pm$ 5 cm, whichever is greater    |
| Humidity                                   | ± 5 % RH                            |
| Loads                                      |                                     |
| Steady-State (acceleration):               | ± 5%                                |
| Magnetic Properties                        |                                     |
| Mapping Distance Measurement:              | ± 1 cm                              |
| Displacement of assembly center of gravity |                                     |
| (c.g.) from rotation axis:                 | $\pm 5 \text{ cm}$                  |
| Vertical displacement of single probe      |                                     |
| centerline from c.g. of assembly:          | $\pm 5 \text{ cm}$                  |
| Mapping turntable angular displacement:    | $\pm 3$ degrees                     |
| Magnetic Field Strength:                   | ± 1 nT                              |

| Repeatability of magnetic measurements       |                                                                                                                                     |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| (short term):                                | $\pm$ 5 % or $\pm$ 2 nT, whichever is greater                                                                                       |
| Demagnetizing and Magnetizing Field Level:   | ± 5 % of nominal                                                                                                                    |
| Mass Properties                              |                                                                                                                                     |
| Weight:                                      | ± 0.2 %                                                                                                                             |
| Center of Gravity:                           | $\pm 0.15$ cm ( $\pm 0.06$ in.)                                                                                                     |
| Moments of Inertia:                          | ± 1.5 %                                                                                                                             |
| Mechanical Shock                             |                                                                                                                                     |
| Response Spectrum:                           | + 100 %, - 50 %                                                                                                                     |
| Time History:                                | ± 10 %                                                                                                                              |
| Pressure                                     |                                                                                                                                     |
| Greater than 1.3 x 104 Pa (Greater than 100  |                                                                                                                                     |
| mm Hg):                                      | ± 5 %                                                                                                                               |
| 1.3 x 104 to 1.3 x 102 Pa (100 mm Hg to 1    |                                                                                                                                     |
| mm Hg):                                      | ± 10 %                                                                                                                              |
| 1.3 x 102 to 1.3 x 101 Pa (1 mm Hg to 1      |                                                                                                                                     |
| micron):                                     | ± 25 %                                                                                                                              |
| Less than 1.3 x 101 Pa (less than 1 micron): | ± 80 %                                                                                                                              |
| Temperature                                  | ± 2.0°C                                                                                                                             |
| Temperature Stabilization                    | The component is within 2 °C of the specified temperature extreme and the rate of change of temperature is less than 1 °C per hour. |
| Vibration                                    |                                                                                                                                     |
| Sinusoidal: Amplitude                        | ± 10 %                                                                                                                              |
| Frequency                                    | ± 2 %                                                                                                                               |

| Random: | RMS level               | ± 10 %             |
|---------|-------------------------|--------------------|
|         | Accel. Spectral Density | $\pm 3 \text{ dB}$ |

#### **3.2.3** Functional Test

각 component는 환경시험 결과를 비교하기 위하여 시험 전·후 결과를 제출하여 상태를 확인할 수 있도록 하여야 한다.

#### 3.2.4 시험결과 합격 및 불합격

각 component는 요구사항 및 규격서에 언급된 각 사항을 만족할 경우 시험 합격으로 간주하며, 단 1개의 요구사항이라도 만족하지 못할 경우 설계변경 등을 통한 재시험을 수행하여 요구사항을 만족하도록 하여야 한다.

#### 3.2.5 Test Data Package

각 component는 매 단계 개발 후 아래의 package를 작성 및 준비하여 제출하여야 한다.

- Test article part number
- Retest requirements document
- Q.A. acceptance tag
- Events log
- Operating time record

- All test procedures including diagrams of the test setups identifying axes and diagrams of thermal and thermal vacuum setup.

- Test data

- Summary test report and conclusions
- All discrepancy documents.

# 4 환경시험 항목

각 component에 대한 환경시험 항목은 아래 표와 같다.

| Table 4-1 Component environmenta | l test requirements | for payload a | nd bus equipment [' | TBD] |
|----------------------------------|---------------------|---------------|---------------------|------|
|----------------------------------|---------------------|---------------|---------------------|------|

| Test                  | Qualification<br>Tests(EQM) | Acceptance Tests(FM) |
|-----------------------|-----------------------------|----------------------|
| Test Article:         |                             |                      |
| Preconditioning       | Optional                    | Optional             |
| Random Vibration      | Required                    | Required             |
| Sine Vibration        | Optional                    | Optional             |
| Shock                 | Required                    | Optional             |
| Thermal Cycling (T/C) | Optional                    | Optional             |
| Thermal Vacuum (T/V)  | Required                    | Required             |

Table 4-2 Summary of thermal test requirements [TBD]

| Condition             | Qualification(EQM)* | Acceptance(FM)*   |
|-----------------------|---------------------|-------------------|
| Thermal Vacuum (T/V)  |                     |                   |
| Temperature           | Table 3-1           | Table 3-1         |
| Pressure, Torr        | ~10 <sup>-5</sup>   | ~10 <sup>-5</sup> |
| Number of cycles      | 2.5                 | 2.5               |
| Dwell                 | Figure 4-1          | Figure 4-1        |
| Thermal Cycling (T/C) |                     |                   |
| Temperature           | Table 3-1           | Table 3-1         |
| Pressure, Torr        | Ambient             | Ambient           |
| Number of cycles      | 6                   | 4                 |
| Dwell                 | Figure 4-1          | Figure 4-1        |

\* Refer to section 3.1.2 for the definition

[참고]

아래의 표는 구조체의 시험요구 사항에 대한 시험 레벨을 보여준다.

| Test             | Qualification (EQM) | Acceptance (FM) |
|------------------|---------------------|-----------------|
| Random Vibration |                     |                 |
| Test Level       | Limit Level + 3 dB  | Limit Level     |
| Duration         | 1 Minute/Axis       | 1 Minute/Axis   |
| Mechanical Shock |                     |                 |
| Test Level       | Limit Level + 3 dB  | Limit Level     |

Table 4-3 Structural mechanical requirements [TBD]

#### 4.1 Thermal Vacuum

Thermal vacuum (T/V) test의 온도 프로파일은 아래의 그림과 같으며, components 레벨에서는 최소 시험 주기는 아래의 그림 같이 최소 2 주기 시험을 수행한다.



Figure 4-1 Timeline for thermal cycle profile [TBD]

추후 발사체 선정, 임무궤도 분석 및 세부설계 진행에 따라 상기 기술된 각 절의 요구사항은 변경이 될 수 있다.